Задача №15540

№15540

Экзамены с этой задачей:

Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность,  Арифметическая прогрессия, Сумма п первых членов арифметической прогрессии,

Задача в следующих классах: 9 класс

Сложность задачи : 3

Задача встречается в следующей книге:

Условие

Числа -100 и -78 являются соответственно седьмым и девятым членами арифметической прогрессии. Найдите пятнадцатый член этой прогрессии и сумму ее первых двадцати членов.

Ответ

NaN

Решение № 15538:

\(a_{7} = -100\), \(a_{9}=-78\). Тогда \(d=\frac{a_{9}-a_{7}}{2}=\frac{-78+100}{2}=11\) и \(a_{15}=a_{7}+8d=-100+8*11=-12\). Далее \(a_{1}=a_{7}-6*d=-100-6*11=-166\), \(a_{20}=a_{15}+5d=-12+5*11=43\). Так что \(S_{20}=\frac{a_{1}+a_{20}}{2}*20=\frac{-166+43}{2}*20=-1230\)

Поделиться в социальных сетях

Комментарии (0)