№15535
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Арифметическая прогрессия, Сумма п первых членов арифметической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Арифметическая прогрессия задана формулой \(а_{n} = 6n - 306\). Укажите наименьший номер, начиная с которого все члены прогрессии: принадлежат открытому лучу (-6;+\infty)
Ответ
NaN
Решение № 15533:
\(a_{n} = 6n-306\), \(a_{n} > -6\) при \(6n-306> -6\), \(n> 50\), \(n=51\)