№15521
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Арифметическая прогрессия, Сумма п первых членов арифметической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Зная формулу n-го члена арифметической прогрессии (\(a_{n}\)), найдите \(а_{1}\) и \(d\): \(a_{n} = \frac{\sqrt{7}n-5}{\sqrt{5}}\)
Ответ
NaN
Решение № 15519:
\(a_{n} = -\frac{\sqrt{7}n-5}{\sqrt{5}\), \(a_{1} = \frac{\sqrt{7}-5}{\sqrt{5}}\), \(d = \frac{\sqrt{7}}{\sqrt{5}}\)