№15480
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Арифметическая прогрессия, Определение арифметической прогрессии.Свойства арифметической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Условие
Четыре числа являются последовательными членами арифметической прогрессии. Сумма первых трех равна -21, а сумма трех последних чисел равна -6. Найдите эти числа.
Ответ
NaN
Решение № 15478:
\(\left\{\begin{matrix} a_{1}+a_{2}+a_{3}=-21 & \\ a_{2}+a_{3}+a_{4}=-6&,\end{matrix}\right\). , и \(a_{1}\),\(a_{2}\),\(a_{3}\),\(a_{4}\)-арифмитическая прогрессия, так что \(\left\{\begin{matrix} a_{1}+a_{2}+d+a_{1}+2d=-21 & \\ a_{1}+d+a_{1}+2d+a_{1}+3d = -6& \end{matrix}\right. \left\{\begin{matrix} a_{1}+d=-7 & \\ a_{1}2d = -2& \end{matrix}\right. \) \(a_{1}=-12\) и \(d=5\) эта числа: -12,-7,-2,3,…