№15479
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Арифметическая прогрессия, Определение арифметической прогрессии.Свойства арифметической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Условие
Сумма второго и пятого членов арифметической прогрессии равна 18, а произведение второго и третьего ее членов равно 21. Запишите первые пять членов этой прогрессии, если известно, что третий ее член — положительное число.
Ответ
NaN
Решение № 15477:
\(\left\{\begin{matrix} a_{2}+a_{5}=18 & \\ a_{2}*a_{3} = 21& \end{matrix}\right. \left\{\begin{matrix} a_{2}+a_{2}+3d=17 & \\ a_{2}(a_{2}+d) = 21& \end{matrix}\right. \left\{\begin{matrix} 2a_{1}+3d=17 & \\ a_{2}(a_{2}+d) = 21& \end{matrix}\right. так как \(a_{2}\) - натуральное число, то \(a_{2}=3\) и \(d=4\) Тогда \(a_{1} = -1\) и прогрессия: -1,3,7,11,15…