Задача №15468

№15468

Экзамены с этой задачей:

Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность,  Арифметическая прогрессия,  Определение арифметической прогрессии.Свойства арифметической прогрессии,

Задача в следующих классах: 9 класс

Сложность задачи : 2

Задача встречается в следующей книге: Мордкович

Условие

Является ли число b членом заданной арифметической прогрессии (\(a_{n}\))? Если да, то укажите номер этого члена.\(a_{1} = -7\), \(d = 5,1\), \(b= 44\)

Ответ

NaN

Решение № 15466:

\(b= a_{1} + (n-1)d\),\(n=\frac{b-a_{1}}{d}+1\), если b- является членом прогрессии \(n=\frac{44-(-7)}{5,1}+1=11\)

Поделиться в социальных сетях

Комментарии (0)