№15462
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Арифметическая прогрессия, Определение арифметической прогрессии.Свойства арифметической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Дана конечная арифметическая прогрессия (\(a_{n}\)). Найдите n, если: \(a_{1} = 1\), \(d=\frac{2}{3}\), \(a_{n} = 67\)
Ответ
NaN
Решение № 15460:
\(a_{n} = a_{1}+(n-1)*d\), так что \(n= \frac{a_{n}-a_{1}}{d} + 1\) \(n=\frac{(67-1)*3}{2}+1=100\)