№15442
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Арифметическая прогрессия, Определение арифметической прогрессии.Свойства арифметической прогрессии,
Задача в следующих классах: 9 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Число 29 является членом арифметической прогрессии 9, 11, 13, ... . Найдите номер этого члена. Найдите номер этого члена.
Ответ
NaN
Решение № 15440:
У данной прогрессии \(a_{1} = 9\) и \(d = 2\), тогда если \(a_{n} = 29\) то \(29 = 9+2(n-1)\) \(29 = 7+2n\) n = 11\)