№15377
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Числовые последовательности,
Задача в следующих классах: 9 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Условие
Докажите, что последовательность убывает: \(d_{n} = \frac{1}{3^{n}}\)
Ответ
NaN
Решение № 15375:
(d_{n} = \frac{1}{3^{n}}\): \(d_{n+1} = \frac{1}{3^{n+1}}< \frac{1}{3^{n}} = d_{n}: d_{n+1}< d_{n}\) Последовательность убывает