№15376
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Числовые последовательности,
Задача в следующих классах: 9 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Условие
Докажите, что последовательность убывает: \(c_{n} =1+ \frac{1}{3n}\)
Ответ
NaN
Решение № 15374:
(c_{n} = 1+\frac{1}{3n}\): \(c_{n+1} = \frac{1}{3n+3}< \frac{1}{3n} = c_{n}: c_{n+1}< c_{n}\) Последовательность убывает