№15372
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Числовые последовательности,
Задача в следующих классах: 9 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Условие
Докажите, что последовательность возрастает: \(c_{n} = 1-\frac{1}{2^{n}}\)
Ответ
NaN
Решение № 15370:
\(c_{n+1} = 1-\frac{1}{2^{n+1}}> 1-\frac{1}{2^{n}} = c_{n}\):\(c_{n+1}> c_{n} \) Последовательность возрастает