№15069
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, Степень с натуральным показателем и ее свойства, Свойства степени с натуральными показателями,
Задача в следующих классах: 7 класс
Сложность задачи : 1
Задача встречается в следующей книге:
Условие
Используя правила умножения и деления степеней, упростите выражение: \(\frac{m^{79} \cdot m^{4}}{m^{99}} \cdot \frac{m^{63} \cdot m^{57}}{m^{96}}\)
Ответ
\(m^{8}\)
Решение № 15067:
\(\frac{m^{79} \cdot m^{4}}{m^{99}} \cdot \frac{m^{63} \cdot m^{57}}{m^{96}} = m^{79+4-99+63+57-96} = m^{8}\)