Задача №14695

№14695

Экзамены с этой задачей:

Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, логарифм числа, Свойства логарифмов,

Задача в следующих классах: 10 класс

Сложность задачи : 3

Задача встречается в следующей книге:

Условие

Упростить: \( \left ( 2^{\log _{\sqrt[4]{2}a}}-3^{\log _{27}\left ( a^{2}+1 \right )^{3}}-2a \right )\div \left ( 7^{4\log _{49}a}-5^{0.5\log _{\sqrt{5}}a}-1 \right ) \)

Ответ

\( a^{2}+a+1 )\

Решение № 14693:

\( \left ( 2^{\log _{4_{ \sqrt{2}} a}} -3^{ \log _{ 27} \left ( a^{2} +1 \right )^{3}} - 2 a \right ) : \left ( 7^{ 4\log _{ 49}a} -5^{ 0.5\log _{ \sqrt{5}}a } - 1 \right ) = \left ( 2^{\log _{2}a^{4}} - 3^{ \log _{3} \left ( a^{2} +1 \right )} - 2 a \right ) : \left ( 7^{ \log _{ 7}a^{2}} -5^{ \log _{ 5}a } - 1 \right ) = \left ( a^{4} -\left ( a^{2} +1 \right ) -2a \right ) : \left ( a^{2} -a -1 \right )=\frac{a^{4} -a^{2}-2a-1}{a^{2}-a-1} = \frac{\left ( a^{2}-a-1 \right )}{a^{2}-a-1} *\left ( a^{2}+a+1 \right ) =a^{2}+a+1 )\.

Поделиться в социальных сетях

Комментарии (0)