Задача №14691

№14691

Экзамены с этой задачей: Преобразования числовых логарифмических выражений

Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, логарифм числа, Свойства логарифмов,

Задача в следующих классах: 10 класс

Сложность задачи : 3

Задача встречается в следующей книге:

Условие

Упростить: \( \frac{( 27^{\frac{1}{\log _{2}3}}+5^{\log _{25}49} )\cdot ( 81^{\frac{1}{\log _{4}9}}-8^{\log _{4}9} )}{3+5^{\frac{1}{\log _{16}25}} \cdot 5^{log _{5}3} } \)

Ответ

-11

Решение № 14689:

\( \frac{( 27^{\frac{1}{\log _{2}3}}+5^{\log _{25}49} )\cdot ( 81^{\frac{1}{\log _{4}9}}-8^{\log _{4}9} )}{3+5^{\frac{1}{\log _{16}25}} \cdot 5^{log _{5}3} }=\frac{\left ( \left ( 3^{3} \right )^ {\log _{3}2}+5^{\log _{5}27^{2}} \right )\left ( \left ( 9^{2} \right )^{\log _{9}4}-\left ( 2^{3} \right )^ {log_{2}23^{2}} \right )}{3+5^{\log _{5}24^{2}}* 3}=\frac{\left ( 3^{\log _{3}2^{3}}+5^{\log _{5}7} \right )\left ( 9^{\log ^{_{9}4^{2}}}-2^{\log _{2}3 ^{3}} \right )}{3+5^{\log _{5}4}*3}=\frac{\left ( 2^{3}+7 \right )\left ( 4^{2}-3^{3} \right )}{3+4*3}=\frac{15*\left ( -11 \right )}{15}=-11 )\.

Поделиться в социальных сетях

Комментарии (0)