№14688
Экзамены с этой задачей: Преобразования числовых логарифмических выражений
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, логарифм числа, Свойства логарифмов,
Задача в следующих классах: 10 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Условие
Упростить: \( 81^{\frac{1}{\log _{5}3}}+27^{\log _{9}36}+3^{\frac{4}{\log _{7}9}} \)
Ответ
890
Решение № 14686:
\( 81^{\frac{1}{\log _{5}3}}+27^{\log _{9}36}+3 ^{\frac{4}{\log _{7}9}}=3^{4\log _{3}5}+3^{\frac {3}{2}\log _{3}36}+3^{\frac{4}{2}\log _{3}7}=5^{4}+36^{\frac{3}{2}}+49=625+216+49= 890 )\.