№14683
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Показательная функция, логарифм числа, Свойства логарифмов,
Задача в следующих классах: 10 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Условие
Упростить: \( \frac{1-\log _{a}^{3}b}{\left ( \log _{a}b+\log _{b}a+1 \right )*\log _{a}\frac{a}{b}} \)
Ответ
\( \log _{a}b )\
Решение № 14681:
\( \frac{1-\log _{a}^{3}b}{\left ( \log _{a}b+\log _{b}a+1 \right )*\log _{a}\frac{a}{b}}=\frac{\left ( 1-\log _{a}b \right )\left ( 1+\log _{a}b+\log _{a}^{2}b \right )}{\left ( \log _{a}b+\frac{1}{\log _{a}b}+1 \right )\left ( \log _{a}a-\log _{a}b \right )}=\frac{\left ( 1-log_{a}b \right )\left ( 1+log_{a}b+log_{a}^{2}b \right )\log _{a}b}{\left ( \log _{a}^{2}b+1+\log _{a}b \right )\left ( 1-\log _{a}b \right )}=\log _{a}b )\.