Задача №13761

№13761

Экзамены с этой задачей:

Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности, Теоремы о пределах,

Задача в следующих классах: 9 класс 10 класс 11 класс

Сложность задачи : 3

Задача встречается в следующей книге: Пратусевич М.Я.,Столбов К.М., Головин А.Н., Алгебра и начала математического анализа. 10 класс: учебн. Для общеобразовательных учреждений: профильный уровень.М.Просвещение, 2009. 415 с.: ил. ISBN 978-5-09-016552-5

Условие

Докажите, что \(\left \{ x_{n} \right \}\) сходится, и найдите \(\lim_{n \to \propto} x_{n} : x_{n+1}=\frac{4}{3}x_{n}-x_{n}^{2}, 1) x_{1}=\frac{1}{6}; 2)x_{1}=\frac{1}{2}; x_{3}=\frac{7}{6}\)

Ответ

NaN

Решение № 13759:

Докажем для случая \(x_{1}=\frac{1}{6}\). Рассмотрим разность \(x_{n+1}-x_{n}=\frac{1}{3x_{n}}-x_{n}^{2}=x_{n}\left ( \frac{1}{3}-x_{n} \right )\). По индукции легко показать, что последовательность \(\left \{ x_{n} \right \}\) возрастает и\(\forall n\in N x_{n}\leqslant \frac{1}{3}\). База индукции \(x_{1}=\frac{1}{6}. Тогда x_{2}-x_{1}=\frac{1}{6}\left ( \frac{1}{3}-\frac{1}{6} \right )=\frac{1}{36}> 0\) и \(x_{2}=x_{1}+\frac{1}{36}=\frac{13}{36}, 0< x_{1}< x_{2}< \frac{1}{3}\). Индукционный переход. Докажем, что \(0< x_{k}< x_{k+1}< \frac{1}{3},если 0< x_{k-1}< x_{k}< \frac{1}{3}\). Так как \(x_{k+1}-x_{k}=x_{k}\left ( \frac{1}{3} -x_{k}\right )> 0\) (по индукционному предположению),\(x_{k+1}> x_{k}\). Если рассмотреть функцию \(g\left ( t \right )=t\left ( \frac{4}{3}-t \right )-\frac{1}{3}; g\left ( t \right )=-\frac{1}{3}\left ( 3t-1 \right )\left ( t-1 \right ), g\left ( t \right )> 0\Leftrightarrow \frac{1}{3}< t< 1\), поэтому \(g\left ( x \right )< 0, x_{k+1}< \frac{1}{3} \)

Поделиться в социальных сетях

Комментарии (0)