Задача №13755

№13755

Экзамены с этой задачей:

Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности, Теоремы о пределах,

Задача в следующих классах: 9 класс 10 класс 11 класс

Сложность задачи : 3

Задача встречается в следующей книге:

Условие

Докажите, что последовательность \(\left \{ x_{n} \right \}\) сходится: \(x_{n}=\frac{2^{n}}{n!} \)

Ответ

NaN

Решение № 13753:

\( \forall n> 2 \frac{x_{n+1}}{x_{n}}=\frac{2}{n+1}< 1\). Доказательство того, что предел существует, здесь гораздо очевиднее, но зато нет способа его найти. Предельный переход, как в предыдущем пункте, здесь ничего не даёт для поиска предела последовательности \(\left \{ x_{n} \right \}\), равного a

Поделиться в социальных сетях

Комментарии (0)