Задача №13753

№13753

Экзамены с этой задачей:

Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности, Свойства бесконечно малых последовательностей, Бесконечно большие последовательности, Определение предела последовательности, Теоремы о пределах,

Задача в следующих классах: 9 класс 10 класс 11 класс

Сложность задачи : 3

Задача встречается в следующей книге:

Условие

Найдите \(\lim_{n \to \propto} n^{\frac{3}{2}}\left ( \sqrt{n+1} +\sqrt{n-1}-2\sqrt{n}\right )\)

Ответ

-\frac{1}{4}

Решение № 13751:

\(\lim_{n \to \propto} n^{\frac{3}{2}}\left ( \sqrt{n+1} +\sqrt{n-1}-2\sqrt{n}\right )=\lim_{n \to \propto}\frac{n^{\frac{3}{2}}\left ( 2n+2\sqrt{n^{2}-1} -4n\right )}{\left ( \sqrt{n+1} +\sqrt{n-1}-2\sqrt{n}\right )}=\lim_{n \to \propto}\frac{2n^{\frac{3}{2}}\left ( \sqrt{n^{2}-1}-n \right )}{\sqrt{n}\left ( \sqrt{1+\frac{1}{n}} +\sqrt{1-\frac{1}{n}}+2\right )}=\lim_{n \to \propto}\frac{-2n}{\left ( \sqrt{1+\frac{1}{n}} +\sqrt{1-\frac{1}{n}}+2 \right )n\left ( \sqrt{1-\frac{1}{n^{2}}+1} \right )}=\frac{-2}{4*2}=-\frac{1}{4} \)

Поделиться в социальных сетях

Комментарии (0)