Задача №13737

№13737

Экзамены с этой задачей:

Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности, Свойства бесконечно малых последовательностей, Бесконечно большие последовательности, Определение предела последовательности, Теоремы о пределах,

Задача в следующих классах: 9 класс 10 класс 11 класс

Сложность задачи : 3

Задача встречается в следующей книге:

Условие

Найдите \(\lim_{n \to \propto} x_{n}\), если \(x_{n}= \frac{\sqrt{n^{2}+1}-n}{\sqrt{n^{3}+1}-n\sqrt{n}}\)

Ответ

+\propto

Решение № 13735:

\( \lim_{n \to \propto} \frac{\sqrt{n^{2}+1}-n}{\sqrt{n^{3}+1}-n\sqrt{n}}=\lim_{n \to \propto} \frac{\left ( n^{2}+1-n^{2} \right )\left ( \sqrt{n^{3}+1}+n\sqrt{n} \right )}{\left ( \sqrt{n^{2}+1}+n \right )\left ( n^{3}+1-n^{3} \right )}=\lim_{n \to \propto} \frac{n\left ( \sqrt{n+\frac{1}{n^{2}}}+\sqrt{n} \right )}{n\left ( 1+\frac{1}{n^{2}}+1 \right )}=+\propto \)

Поделиться в социальных сетях

Комментарии (0)