№13732
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности, Свойства бесконечно малых последовательностей, Бесконечно большие последовательности, Определение предела последовательности, Теоремы о пределах,
Задача в следующих классах: 9 класс 10 класс 11 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Условие
Найдите\( \lim_{n \to \propto} x_{n}\), если \(x_{n}=\frac{n^{3}+27}{n^{4}-15} \)
Ответ
-\frac{1}{2}
Решение № 13730:
\( \lim_{n \to \propto}\left ( \frac{1+2+...+n}{n+2}-\frac{n}{2} \right )=\lim_{n \to \propto}\left ( \frac{\left ( n+1 \right )n}{2\left ( n+2 \right )}-\frac{n}{2} \right )=\lim_{n \to \propto}\frac{-n}{2n+4}=-\frac{1}{2} \)