Задача №13732

№13732

Экзамены с этой задачей:

Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности, Свойства бесконечно малых последовательностей, Бесконечно большие последовательности, Определение предела последовательности, Теоремы о пределах,

Задача в следующих классах: 9 класс 10 класс 11 класс

Сложность задачи : 3

Задача встречается в следующей книге:

Условие

Найдите\( \lim_{n \to \propto} x_{n}\), если \(x_{n}=\frac{n^{3}+27}{n^{4}-15} \)

Ответ

-\frac{1}{2}

Решение № 13730:

\( \lim_{n \to \propto}\left ( \frac{1+2+...+n}{n+2}-\frac{n}{2} \right )=\lim_{n \to \propto}\left ( \frac{\left ( n+1 \right )n}{2\left ( n+2 \right )}-\frac{n}{2} \right )=\lim_{n \to \propto}\frac{-n}{2n+4}=-\frac{1}{2} \)

Поделиться в социальных сетях

Комментарии (0)