№13719
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности, Свойства бесконечно малых последовательностей, Бесконечно большие последовательности, Определение предела последовательности, Теоремы о пределах,
Задача в следующих классах: 9 класс 10 класс 11 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Условие
Последовательность \( \left \{ x_{n} \right \}\) сходится , а последовательность \(\left \{ y_{n} \right \}\) расходится. Докажите, что при \(b\neq 0\) последовательность \(\left \{ ax_{n}+bx_{n} \right \}\) расходится.
Ответ
NaN
Решение № 13717:
Пусть существует \(\lim_{n \to \propto} \left ( ax_{n}+bx_{n} \right ) \), тогда так как \(\exists \lim_{n \to \propto} x_{n}, \exists \lim_{n \to \propto} ax_{n}\). Рассмотрим \(\lim_{n \to \propto} \left ( ax_{n}+bx_{n} \right ) - \lim_{n \to \propto} \left ( ax_{n} \right )=\lim_{n \to \propto} by_{n}=b\lim n \to \propto y_{n}\), следовательно, последовательность \(\left \{ y_{n} \right \} \)сходится, что противоречит условию.