№13717
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности, Свойства бесконечно малых последовательностей, Бесконечно большие последовательности, Определение предела последовательности, Теоремы о пределах,
Задача в следующих классах: 9 класс 10 класс 11 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Условие
Покажите, что из существования предела суммы двух последовательностей\( \lim_{n \to \propto} \left ( x_{n}+y_{n} \right )\) не ледует существования хотя бы одного из пределов \(\lim_{n \to \propto} x_{n} \)или \(\lim_{n \to \propto} y_{n}\) (приведите соответствующие примеры) \)
Ответ
NaN
Решение № 13715:
Например, \(\lim_{n \to \propto} \left ( \frac{2n^{2}+n}{3n-1} +\frac{6n^{3}+1}{1-9n^{2}}\right )=\frac{5}{9}\), но последовательности \(\left \{ x_{n} \right \} и \left \{ y_{n} \right \}\) для которых \(x_{n}=\frac{2n^{2}+n}{3n-1}\) и \(y_{n}=\frac{6n^{3}+1}{1-9n^{2}}\), расходятся.