№13687
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности, Свойства бесконечно малых последовательностей, Бесконечно большие последовательности, Определение предела последовательности, Теоремы о пределах,
Задача в следующих классах: 9 класс 10 класс 11 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Условие
Докажите, что, для того чтобы последовательность \(\left \{ x_{n} \right \}\) была бесконечно большой, необходимо и достаточно, чтобы последовательность \(\left \{ \left | x_{n} \right | \right \}\) была бесконечно малой.
Ответ
NaN
Решение № 13685:
Пусть \(\left \{ x_{n} \right \}\) - бесконечно малая последовательность. Тогда \(\forall \varepsilon > 0 \exists N_{\varepsilon }\in N: \forall n\geqslant N_{\varepsilon }\left | x_{n} \right |< \varepsilon \), но \(\left | x_{n} \right |< \varepsilon \Leftrightarrow \left \| x_{n} \right \|< \varepsilon \), что и доказывает требуемое