Задача №13681

№13681

Экзамены с этой задачей:

Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Последовательность, Предел последовательности, Определение предела последовательности,

Задача в следующих классах: 9 класс 10 класс 11 класс

Сложность задачи : 3

Задача встречается в следующей книге:

Условие

Докажите, что если последовательность \(\)\left \{ x_{n} \right \} сходится к числу A и последовательность \(\left \{ y_{n} \right \}\) получена перестановкой членов последовательности \(\left \{ x_{n} \right \}\), то и последовательность \(\left \{ y_{n} \right \}\) сходится к числу A.

Ответ

NaN

Решение № 13679:

Ясно, что для любой окрестности числа A вне этой окрестности находится конечное число членов последовательности или их нет вовсе. Значит, и конечно число членов последовательности \(\left \{ y_{n_{k}} \right \}\), полученных перестановкой членов последовательности \(\left \{ x_{n} \right \} \)

Поделиться в социальных сетях

Комментарии (0)