№13299
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебра и начала анализа, Элементы высшей математики, основы математического анализа, Дифференцирование функций, Приложения производной, Монотонность функций,
Задача в следующих классах: 11 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Найти точки максимумов и минимумов функций\(y=cosxcos2x\)
Ответ
x_{max}=2\pi n, x_{max}=arccos\left ( -\frac{1}{\sqrt{6}} \right )+2\pi k, x_{max}=-arccos\left ( -\frac{1}{\sqrt{6}} \right )+2\pi m, k, m, n\in Z; x_{min}=arccos\left ( \frac{1}{\sqrt{6}} \right )+2\pi n, x_{min}=-arccos\left ( \frac{1}{\sqrt{6}} \right )+2\pi m, x_{min}=\pi +2\pi k, k, m, n\in Z
Решение № 13297:
NaN