№12948
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Действительные числа, Иррациональные выражения, Приведение корней к нормальному виду,
Задача в следующих классах: 8 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Привести к простейшей форме корень \(\frac{a+b}{a}\sqrt[3]{\frac{a^{13}-a^{12}b}{\left ( a-b \right )^{2}}}\)
Ответ
\(\frac{a^{3}\left ( a+b \right )\sqrt[3]{\left ( a-b \right )^{2}}}{a-b}\)
Решение № 12946:
\(\frac{a+b}{a}\sqrt[3]{\frac{a^{13}-a^{12}b}{\left ( a-b \right )^{2}}}=\frac{a+b}{a}\sqrt[3]{\frac{a^{12}\left ( a-b \right )}{\left ( a-b \right )^{2}}}=\frac{a+b}{a}\frac{\sqrt[3]{a^{12}\left ( a-b \right )^{2}}}{a-b}=\frac{a+b}{a}\frac{a^{4}\sqrt[3]{\left ( a-b \right )^{2}}}{a-b}=\frac{a^{3}\left ( a+b \right )\sqrt[3]{\left ( a-b \right )^{2}}}{a-b}\)