№12631
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Многочлены, квадратный трехчлен, Квадратные уравнения, Теорема Виета,
Задача в следующих классах: 8 класс
Сложность задачи : 1
Задача встречается в следующей книге:
Условие
При некотором значении параметра \( p \) корни квадратного уравнения \( 2px^{2}+5x+p+1=0 \) являются обратными числами. Найдите эти корни.
Ответ
NaN
Решение № 12629:
\( x_{1}\) и \( x_{2}\) - корни уравнения. \( x_{1}=2p; b=5; c=p+1 x_{1}*x_{2}=\frac{a}{c} \frac{1}{x_{2}}*x_{2}=\frac{p+1}{2p} 1=\frac{p+1}{2p} 2p=p+1 2p-p=1 p=1 2*1x^{2}+5x+1+1=0 2x^{2}+5x+2=0 D=5^{2}-4*2*2=25-16=9 x_{1}=\frac{-5-3}{4}=-2; x_{2}=\frac{-5+3}{4}=-\frac{1}{2} \).