№12495
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Многочлены, квадратный трехчлен, Квадратные уравнения, Определение квадратного уравнения,
Задача в следующих классах: 8 класс
Сложность задачи : 1
Задача встречается в следующей книге:
Условие
Найдите хотябы один корень квадратного уравнения: \( 5x^{2}+x\sqrt{3}+1+\sqrt{2}=5(\sqrt{2}+\sqrt{3})^{2}+4+\sqrt{2}+\sqrt{6}; \).
Ответ
NaN
Решение № 12493:
\( 5x^{2}+x\sqrt{3}+1+\sqrt{2}=5(\sqrt{2}+\sqrt{3})^{2}+4+\sqrt{2}+\sqrt{6} \).