№12480
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Многочлены, квадратный трехчлен, Квадратные уравнения, Формула корней квадратного уравнения,
Задача в следующих классах: 8 класс
Сложность задачи : 1
Задача встречается в следующей книге:
Условие
Докажите, что не существует такого значения параметра \( р \), при котором уравнение \( х^{2}-рх+р-2 = 0 \) имело бы только один корень.
Ответ
NaN
Решение № 12478:
\( x^{2}-px+p-2=0 D=(-p)^{2}-4*(p-2)=p^{2}-4p+8=p^{2}-4p+4+4=(p^{2}-2)^{2}+4> 0 \), значит, при любом \( p \) уравнение имеет два корня.