№12245
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебраические дроби, Умножение и деление алгебраических дробей. Возведение алгебраической дроби в степень,
Задача в следующих классах: 8 класс
Сложность задачи : 3
Задача встречается в следующей книге:
Условие
Найдите значение выражения: \(\frac{a^{2}+a}{2a-8} \cdot \frac{a^{2}+a}{2a+8}:\frac{3a^{4}+6a^{3}+2a^{2}}{a^{2}-16} при a=1 234 567 890\)
Ответ
\(\frac{1}{12}\)
Решение № 12243:
\(\frac{a^{2}+a}{2a-8} \cdot \frac{a^{2}+a}{2a+8}:\frac{3a^{4}+6a^{3}+2a^{2}}{a^{2}-16}=\frac{a(a+1)a(a+1) \cdot (a-4)(a+4)}{2(a-4)2(a+4) \cdot 3a^{2}(a^{2}+2a+1)}=\frac{a^{2}(a+1)^{2}}{(12a^{2}(a+1)^{2}}=\frac{(a+1)^{2}}{12(a+1)^{2}}=\frac{1}{12}\)