№12238
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебраические дроби, Умножение и деление алгебраических дробей. Возведение алгебраической дроби в степень,
Задача в следующих классах: 8 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Упростите выражение: \((-\frac{a^{2}+ab}{ab^{2}-b^{3}})^{4} \cdot (\frac{b-a}{a^{2}+2ab+b^{2}}^{3}\)
Ответ
\(\frac{a^{4}}{b^{8}(b-a)(a+b)^{2}}\)
Решение № 12236:
\((-\frac{a^{2}+ab}{ab^{2}-b^{3}})^{4} \cdot (\frac{b-a}{a^{2}+2ab+b^{2}}^{3}=\frac{a^{4}(a+b)^{4}(b-a)^{3}}{b^{8}(a-b)^{4}((a+b)^{2})^{3}}=\frac{a^{4}(a+b)^{4}(b-a)^{3}}{b^{8}(b-a)^{4}(a+b)^{6}}=\frac{a^{4}}{b^{8}(b-a)(a+b)^{2}}\)