№12220
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебраические дроби, Умножение и деление алгебраических дробей. Возведение алгебраической дроби в степень,
Задача в следующих классах: 8 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Упростите выражение: \((x^{3}+y^{3}) \cdot \frac{x+y}{x^{2}-xy+y^{2}}\)
Ответ
\((x+y)^{2}\)
Решение № 12218:
\((x^{3}+y^{3}) \cdot \frac{x+y}{x^{2}-xy+y^{2}}=\frac{(x+y)(x^{2}-xy+y^{2})(x+y)}{x^{2}-xy+y^{2}}=(x+y)^{2}\)