№12216
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебраические дроби, Умножение и деление алгебраических дробей. Возведение алгебраической дроби в степень,
Задача в следующих классах: 8 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Упростите выражение: \(\frac{25-y^{2}}{25y} \cdot \frac{10y^{2}}{y^{2}-10y+25}\)
Ответ
\(\frac{2y(5+y)}{5(5-y)}\)
Решение № 12214:
\(\frac{25-y^{2}}{25y} \cdot \frac{10y^{2}}{y^{2}-10y+25}=\frac{(5-y)(5+y) \cdot 10y^{2}}{25y(y-5)^{2}}=\frac{(5-y)(5+y) \cdot 5 \cdot 2y^{2}}{5 \cdot 5y(5-y)^{2}}=\frac{2y(5+y)}{5(5-y)}\)