№12067
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебраические дроби, Сложение и вычитание алгебраических дробей,
Задача в следующих классах: 8 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Упростите выражение: \(\frac{6x^{2}-15x+25}{4x^{2}-25}+\frac{x}{5-2x}\)
Ответ
\(\frac{2x-5}{2x+5}\)
Решение № 12065:
\(\frac{6x^{2}-15x+25}{4x^{2}-25}+\frac{x}{5-2x}=\frac{6x^{2}-15x+25}{(2x-5)(2x+5)}-\frac{x}{2x-5}=\frac{6x^{2}-15x+25-x(2x+5)}{(2x-5)(2x+5)}=\frac{6x^{2}-15x+25-2x^{2}-5x}{(2x5)(2x+5)}=\frac{4x^{2}-20x+25}{(2x-5)(2x+5)}=\frac{(2x-5)^{2}}{(2x-5)(2x+5)}=\frac{2x-5}{2x+5}\)