№12057
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебраические дроби, Сложение и вычитание алгебраических дробей,
Задача в следующих классах: 8 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Упростите выражение: \(\frac{d+3}{cd+d^{2}}-\frac{c-3}{cd+c^{2}}\)
Ответ
\(\frac{3}{cd}\)
Решение № 12055:
\(\frac{d+3}{cd+d^{2}}-\frac{c-3}{cd+c^{2}}=\frac{d+3}{d(c+d)}-\frac{c-3}{c(d+c)}=\frac{c(d+3)-d(c-3)}{cd(d+c)}=\frac{cd+3c-cd+3d}{cd(d+c)}=\frac{3c+3d}{cd(d+c)}=\frac{3(c+d)}{cd(d+c)}=\frac{3}{cd}\)