№12044
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебраические дроби, Сложение и вычитание алгебраических дробей,
Задача в следующих классах: 8 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Упростите выражение: \(\frac{3-x}{(x-1)(x+1)}-\frac{x-2}{x(1-x)}\)
Ответ
\(\frac{2}{x(x+1)}\)
Решение № 12042:
\(\frac{3-x}{(x-1)(x+1)}-\frac{x-2}{x(1-x)}=\frac{3-x}{(x-1)(x+1)}+\frac{x-2}{x(x-1)}=\frac{x(3-x)+(x-2)(x+1)}{x(x-1)(x+1)}=\frac{3x-x^{2}+x^{2}+x-2x-2}{x(x-1)(x+1)}=\frac{2x-2}{x(x-1)(x+1)}=\frac{2(x-1)}{x(x-1)(x+1)}=\frac{2}{x(x+1)}\)