№12013
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебраические дроби, Сложение и вычитание алгебраических дробей,
Задача в следующих классах: 8 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Найдите область определения алгебраических дробей и выполните указанные действия: \(\frac{c+1}{c+3}-\frac{c^{2}-3}{c(c+3)}\)
Ответ
\(c \neq -3\)
Решение № 12011:
\(\frac{c+1}{c+3}-\frac{c^{2}-3}{c(c+3)}=\frac{c(c+1)-c^{2}+3}{c(c+3)}=\frac{c^{2}+c-c^{2}+3}{c(c+3)}=\frac{c+3}{c(c+3)}=\frac{1}{c}; c \neq 0, c+3 \neq 0; c \neq -3\)