№11964
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебраические дроби, Сложение и вычитание алгебраических дробей,
Задача в следующих классах: 8 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Докажите тождество: \(\frac{x^{3}+y^{3}}{(x-y)^{2}}+\frac{3xy^{2}-y^{3}}{(y-x)^{2}}+\frac{3xy^{2}}{2xy-x^{2}-y^{2}}=\frac{x^{3}}{(x-y)^{2}}\)
Ответ
NaN
Решение № 11962:
\(\frac{x^{3}+y^{3}}{(x-y)^{2}}+\frac{3xy^{2}-y^{3}}{(y-x)^{2}}+\frac{3xy^{2}}{2xy-x^{2}-y^{2}}=\frac{x^{3}}{(x-y)^{2}}=\frac{x^{3}+y^{3}}{(x-y)^{2}}+\frac{3xy^{2}-y^{3}}{(x-y)^{2}}+\frac{3xy^{2}}{-(x^{2}-2xy+y^{2}}=\frac{x^{3}+y^{3}+3xy^{2}-y^{3}-3xy^{2}}{(x-2)^{2}}=\frac{x^{3}}{(x-y)^{2}}\)