Задача №11941

№11941

Экзамены с этой задачей:

Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебраические дроби, Сложение и вычитание алгебраических дробей,

Задача в следующих классах: 8 класс

Сложность задачи : 2

Задача встречается в следующей книге: Н.А.Шапошников, Н.К.Вальцов. Сборник алгебраических задач для средней школы,издание 13 переработанное,часть 2,государственное учебно-педагогическое издание 1933

Условие

Найдите область определения алгебраических дробей и выполните указанные действия: \(\frac{n^{2}+n}{n^{3}-8}+\frac{n+4}{n^{3}-8}\)

Ответ

\(n \neq 2\)

Решение № 11939:

\(\frac{n^{2}+n}{n^{3}-8}+\frac{n+4}{n^{3}-8}=\frac{n^{2}+n+n+4}{(n-2)(n^{2}+2n+4)}=\frac{n^{2}+2n+4}{(n-2)(n^{2}+2n+4)}=n-2; n-2 \neq 0, n \neq 2\)

Поделиться в социальных сетях

Комментарии (0)