№11834
Экзамены с этой задачей:
Предмет и тема: Математика, Арифметика и начала Алгебры, Основы элементарной алгебры, Алгебраические дроби, Основные понятия,
Задача в следующих классах: 8 класс
Сложность задачи : 2
Задача встречается в следующей книге:
Условие
Приведите к наименьшему общему знаменателю алгебраические дроби: \(\frac{7n+m}{63m^{2}n^{4}}\) и \(\frac{n-4m}{36m^{3}n^{3}}\)
Ответ
\(252m^{3}n^{4}\)
Решение № 11832:
\(\frac{7n+m}{63m^{2}n^{4}}=\frac{4m(7n+m)}{252m^{3}n^{4}}; \frac{n-4m}{36m^{3}n^{3}}=\frac{7n(n-4n)}{252m^{3}n^{4}}\)