Задачи

Фильтрация

Показать фильтрацию

По классам:

По предметам:

По подготовке:

По классам:

По авторам:

Упростить выражения: \( \left ( \left ( \log _{b}^{4}a+\log _{a}^{4}b+2 \right )^{1/2}+2 \right )^{1/2}-\log _{b}a-\log _{a}b \)

Решение №17693: \(\left ( \left ( \log _{b}^{4}a+\log _{a}^{4}b+2 \right )^{1/2}+2 \right )^{1/2}-\log _{b}a-\log _{a}b=\left ( \left ( \log _{b}^{4}a+\frac{1}{\log _{b}^{4}a}+2 \right )^{1/2}+2 \right )^{1/2}-\log _{b}a-\frac{1}{\log _{b}a}=\sqrt{\sqrt{\frac{\log _{b}^{8}a+2\log _{b}^{4}a+1}{\log _{b}^{4}a}}+2}-\frac{\log _{b}^{2}a+1}{\log _{b}a}=\sqrt{\sqrt{\left ( \frac{\log _{b}^{4}a+1}{\log _{b}^{2}a} \right )^{2}}+2}-\frac{\log _{b}^{2}a+1}{\log _{b}a}=\sqrt{\frac{\log _{b}^{4}a+1}{\log _{b}^{2}a}+2}-\frac{\log _{b}^{2}a+1}{\log _{b}a}=\sqrt{\frac{\log _{b}^{4}a+2\log _{b}^{2}a+1}{\log _{b}^{2}a}}-\frac{\log _{b}^{2}a+1}{\log _{b}^a}=\sqrt{\left ( \frac{\log _{b}^{2}a+1}{\log _{b}^a} \right )^{2}}-\frac{\log _{b}^{2}a+1}{\log _{b}a}=\frac{\log _{b}^{2}a+1}{\left | \log _{b}a \right |}-\frac{\log _{b}^{2}a+1}{\log _{b}a} \) Таким образом, получаем два случая: \( \left\{\begin{matrix} \log _{b}a< 0\) или \( \left\{\begin{matrix} 0< b< 1, & & \\ a> 1 & & \end{matrix}\right. \cup \left\{\begin{matrix} b> 1, & & \\ 0< a< 1; & & \end{matrix}\right. & & \\ -\frac{\log _{b}^{2}a+1}{\log _{b}a}-\frac{\log _{b}^{2}a+1}{\log _{b}a}=\frac{-2\left ( \log _{b}^{2}a+1 \right )}{\log _{b}a}=-2\left ( \log _{b}a+\log _{a}b \right ); & & \end{matrix}\right. \left\{\begin{matrix} \log _{b}a> 0\) или \( \left\{\begin{matrix} 0< b< 1, & & \\ 0< a< 1 & & \end{matrix}\right. \cup \left\{\begin{matrix} b> 1, & & \\ a> 1; & & \end{matrix}\right. & & \\ \frac{\log _{b}^{2}a+1}{\log _{b}a}-\frac{\log _{b}^{2}a+1}{\log _{b}a}=0 & & \end{matrix}\right. \)

Ответ: \( -2\left ( \log _{b}a+\log _{a}b \right ) )\, если \( \left\{\begin{matrix} a> 1, & & \\ 0< b< 1 & & \end{matrix}\right )\ или \( \left\{\begin{matrix} 0< a< 1, & & \\ b> 1 & & \end{matrix}\right )\ и 0, если \( \left\{\begin{matrix} 0< a< 1, & & \\ 0< b< 1 & & \end{matrix}\right )\, или \( \left\{\begin{matrix} a> 1, & & \\ b> 1 & & \end{matrix}\right )\

Решить уравнения: \( \frac{2}{\sqrt{3}\log_{2}\sqrt{x^{2}}}-\frac{1}{\sqrt{\log_{2}\left ( -x \right )}}=0 \)

Решение №17694: ОДЗ: \( \left\{\begin{matrix} x^{2}> 0, & & & \\ -x> 0, & & & \\ \log_{2}\left ( -x \right )> 0 & & & \end{matrix}\right. \Leftrightarrow x< -1 \) Так как по ОДЗ \( x< 0 \), то имеем \( \frac{2}{\sqrt{3}\log_{2}\left ( -x \right )}=\frac{1}{\sqrt{\log_{2}\left ( -x \right )}} \Rightarrow \frac{4}{3\log_{2}^{2}\left ( -x \right )}=\frac{1}{\log_{2}\left ( -x \right )} \Leftrightarrow 3\log_{2}^{2}\left ( -x \right )-4\log_{2}\left ( -x \right )=0 \Leftrightarrow \log_{2}\left ( -x \right \)left ( 3\log_{2}\left ( -x \right )-4 \right )=0 \Leftrightarrow \log_{2}\left ( -x \right )=\frac{4}{3} \), так как \( \log_{2}\left ( -x \right \)neq 0 \) Отсюда \( -x=2^{4/3}, x=-2^{4/3} \)

Ответ: \( -2^{4/3} )\

Решить уравнения: \( 3*4^{x-2}+27=a+a*4^{x-2} \) При каких значениях \( a \) уравнение имеет решение?

Решение №17695: Перепишем уравнение в виде \( 3*4^{x-2}-a*4^{x-2}=a-27 \Leftrightarrow \left ( 3-a \right )*4^{x-2}=a-27 \Rightarrow 4^{x-2}=\frac{a-27}{3-a} .\frac{a-27}{3-a}> 0 \) Логарифмируя обе части этого уравнения по основанию 4, получим \( \log _{4}4^{x-2}=\log _{4}\frac{a-27}{3-a} \Leftrightarrow x-2=\log _{4}\frac{a-27}{3-a}, x=2+\log _{4}\frac{a-27}{3-a} \), где \( \frac{a-27}{3-a}> 0 \) Решая полученное неравенство методом интервалов, имеем. Таким образом \( a\epsilon \left ( 3; 27 \right ) \)

Ответ: \( 2+\log _{4}\frac{a-27}{3-a} )\, где \( a\epsilon \left ( 3; 27 \right ) )\

Упростить выражения: \( \left ( 6\left ( \log _{b}a*\log _{a^{2}}b+1 \right )+\log _{b}a^{-6}+\log _{a}^{2}b \right )^{1/2}-\log _{a}b \) при \( a> 1 \)

Решение №17696: \( \left ( 6\left ( \log _{b}a*\log _{a^{2}}b+1 \right )+\log _{b}a^{-6}+\log _{a}^{2}b \right )^{1/2}-\log _{a}b=\left ( 6\left ( \frac{1}{2}+1 \right )-6\log _{a}b+\log _{a}^{2}b \right )^{1/2}-\log _{a}b=\sqrt{9-6\log _{a}b+\log _{a}^{2}b}-\log _{a}b=\sqrt{\left ( 3-\log _{a}b \right )^{2}}-\log _{a}b=\left | 3-\log _{a}b \right |-\log _{a}b \) Раскрывая модуль, получим два случая: \( \left | 3-\log _{a}b \right |-\log _{a}b=\left\{\begin{matrix} 3-\log _{a}b\leq 0, & & \\ -3+\log _{a}b-\log _{a}b=-3; & & \end{matrix}\right. \left\{\begin{matrix} b\geq a^{3}, & & \\ \left | 3-\log _{a}b \right |-\log _{a}b=-3; & & \end{matrix}\right. \left | 3-\log _{a}b \right |-\log _{a}b=\left\{\begin{matrix} 3-\log _{a}b> 0, & & \\ 3-\log _{a}b-\log _{a}b=3-2\log _{a}b; & & \end{matrix}\right. \left\{\begin{matrix} 0< b< a^{3} & & \\ \left | 3-\log _{a}b \right |-\log _{a}b=3-2\log _{a}b. & & \end{matrix}\right. \)

Ответ: \( -3 )\, если \( b\geq a^{3} )\, и \( 3-2\log _{a}b )\, если \( 0< b< a^{3}, b\neq 1 )\

Решить уравнения: \( \sqrt{2\log _{8}\left ( -x \right )}-\log _{8}\sqrt{x}^{2}=0 ).

Решение №17702: ОДЗ: \( \left\{\begin{matrix} -x> 0, & & \\ x^{2}> 0, & & \end{matrix}\right.x< 0 \) Из условия имеем \( \sqrt{2\log _{8}\left ( -x \right )}-\log _{8}\left ( -x \right )=0 \sqrt{\log _{8}\left ( -x \right )}\left ( \sqrt{2}-\sqrt{\log _{8}\left ( -x \right )} \right )=0 \) Тогда \( \log _{8}\left ( -x \right )=0 \), откуда \( x_{1}=-1 \), или \( \sqrt{2}-\sqrt{\log _{8}\left ( -x \right )}=0 \), откуда \( \sqrt{2}=\sqrt{\log _{8}\left ( -x \right )}, 2=\log _{8}\left ( -x \right ), x_{2}=-64 \)

Ответ: \( -64; -1 )\

Решить уравнения: \( \log _{\sqrt{a}}\frac{\sqrt{2a-x}}{a}-\log _{1/a}x=0 \)

Решение №17703: ОДЗ: \( \left\{\begin{matrix} 0< a\neq 1 & & \\ 2a-x\geq 0 & & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} 0< a\neq 1 & & \\ x\leq 2a & & \end{matrix}\right. \) Из условия имеем \( \frac{\log _{a}\frac{\sqrt{2a-x}}{a}}{\log _{a}\sqrt{a}}-\frac{\log _{a}x}{\log _{a}\frac{1}{a}}=0 \Leftrightarrow \log _{a}\left ( 2a-x \right )+\log _{a}x=2 \Leftrightarrow \log _{a}x\left ( 2a-x \right )=2 \), откуда \( x^{2}-2ax+a^{2}, \left ( x-a \right )^{2}=0 \Leftrightarrow x=a \)

Ответ: \( a )\, где \( 0< a\neq 1 )\

Зная, что \( \lg 2=a \), и \( \log _{2}7=b \), найти \( \lg 56 \)

Решение №17704: \( \lg 56 =\lg \left ( 7*8 \right )=\lg 7+\lg 8=\lg 7+3\lg 2=\frac{\log _{2}7}{\log _{2}10}+3\lg 2=\log _{2}7*\lg 2+3\lg 2=ab+3a=a\left ( b+3 \right ) \)

Ответ: \( a\left ( b+3 \right ) )\

Решить уравнения: \( \log _{a}x+\log _{\sqrt{a}}x+\log _{\sqrt[3]{a^{2}}}x=27 \)

Решение №17705: ОДЗ: \( \left\{\begin{matrix} x> 0, & & \\ 0< a\neq 1 & & \end{matrix}\right. \) Перейдем к основанию \( a \) Имеем \( \log _{a}x+2\log _{a}x+\frac{3}{2}\log _{a}x=27 \Leftrightarrow \log _{a}x=6 \), откуда \( x=a^{6}\)

Ответ: \( a^{6} )\, где \( 0< a\neq 1 )\

Решить уравнения: \( \log _{a}x+\log _{a^{2}}x+\log _{a^{3}}x=11 \)

Решение №17706: ОДЗ: \( \left\{\begin{matrix} x> 0, & & \\ 0< a\neq 1 & & \end{matrix}\right. \) Перейдем к основанию \( a \) Имеем \( \log _{a}x+\frac{1}{2}\log _{a}x+\frac{1}{3}\log _{a}x=11 \Leftrightarrow \log _{a}x=6 \), откуда \( x=a^{6} \)

Ответ: \( a^{6} , 0< a\neq 1 )\

Упростить выражения: \( \left ( b^{\frac{\log _{100}a}{\lg a}}*a^{\frac{\log _{100}b}{\lg b}} \right )^{2\log _{ab}\left ( a+b \right )} \)

Решение №17707: \( \left ( b^{\frac{\log _{100}a}{\lg a}}*a^{\frac{\log _{100}b}{\lg b}} \right )^{2\log _{ab}\left ( a+b \right )}=\left ( b^{\frac{1}{2}\frac{\lg a}{\lg b}}*a^{\frac{1}{2}\frac{\lg b}{\lg b}} \right )^{2\log _{ab}\left ( a+b \right )}=\left ( \left ( ab \right )^{\frac{1}{2}} \right )^{2\log _{ab}\left ( a+b \right )}=\left ( ab \right )^{\log _{ab}\left ( a+b \right )}=a+b \)

Ответ: \( a+b )\

Решить уравнения: \( \log _{x}m*\log _{\sqrt{m}}\frac{m}{\sqrt{2m-x}}=1 \)

Решение №17708: ОДЗ: \( \left\{\begin{matrix} 0< m\neq 1 & & & \\ 0< x\neq 1 & & & \\ x< 2m & & & \end{matrix}\right. \) Перейдем к основанию \( m \), тогда \( \frac{1}{\log _{m}x}*\frac{\log _{m}\frac{m}{\sqrt{2m-x}}}{\log _{m}m}=1 \Leftrightarrow \log _{m}x+\log _{m}\left ( 2m-x \right )=2 \Rightarrow \log _{m}x\left ( 2m-x \right )=2 \) Тогда \( x^{2}-2mx+m^{2}=0, \left ( x-m \right )^{2}=0 \), откуда \( x=m \)

Ответ: \( m )\, где \( 0< m\neq 1 )\

Упростить выражения: \( \left ( x^{1+\frac{1}{2\log _{4}x}}+8^{\frac{1}{3\log _{x^{2}}2}}+1 \right )^{1/2} \)

Решение №17710: ОДЗ: \( 0< x\neq 1 . \left ( x^{1+\frac{1}{2\log _{4}x}}+8^{\frac{1}{3\log _{x^{2}}2}}+1 \right )^{1/2}=\left ( x*x^{\frac{1}{\log _{2}x}}+2^{\frac{1}{\log _{x^{2}}2}}+1 \right )^{\frac{1}{2}}=\left ( x*x^{\log _{2}x}+2^{\log _{2}x^{2}}+1 \right )^{\frac{1}{2}}=\left ( 2x+x^{2}+1 \right )^{\frac{1}{2}}=\sqrt{\left ( x+1 \right )^{2}}=\left | x+1 \right |=x+1 \) ( с учетом ОДЗ: 0< x\neq 1) \)

Ответ: \( x+1 )\, где \( 0< x\neq 1 )\

Решить уравнения: \( \log _{\sqrt{x}}a*\log _{a^{2}}\frac{a^{2}}{2a-x}=1 \)

Решение №17711: ОДЗ: \( \left\{\begin{matrix} 0< a\neq 1, & & & \\ x\neq 2a, & & & \\ 0< x\neq 1 & & & \end{matrix}\right. \) Перейдем к основанию \( a \) Имеем \( \frac{\log _{a}a}{\log _{a}\sqrt{x}}*\frac{\log _{a}\frac{a^{2}}{2a-x}}{\log _{a}a^{2}}=1 \Leftrightarrow \log _{a}\left ( 2a-x \right )+\log _{a}x=2 \Leftrightarrow \log _{a}x\left ( 2a-x \right )=2, x\left ( 2a-x \right )=a^{2}, x^{2}-2ax+a^{2}=0, \left ( x-a \right )^{2}=0 \), откуда \( x=a \)

Ответ: \( x=a )\, где \( 0< a\neq 1 )\

Постройте треугольник \(АВС\) по стороне \(АВ\), углу \(А\) и сумме сторон \(АС + СВ\) (см. рис. ниже а).

Решение №17713: Продолжим сторону \(АС\) треугольника \(АВС\) на отрезок \(CD\), равный стороне \(ВС\) (рис. 51, б). В треугольнике \(ABD\) известны стороны \(АВ\) и \(АD = АС + СВ\) и угол А между ними, поэтому его можно построить. Серединный перпендикуляр к стороне \(BD\) пересекает сторону \(AD\) в искомой точке \(С\).

Ответ: NaN

Постройте прямоугольный треугольник по гипотенузе и катету (см. рис. ниже, а). Гипотенуза

Решение №17714: Сначала построим окружность, диаметром которой служит данная гипотенуза \(АВ\), а затем построим окружность с центром \(А\), радиус которой равен данному катету. Точки \(С_{1}\) и \(С_{2}\), в которых пересекаются построенные окружности (см. рис. ниже, б), являются вершинами искомых треугольников \(АВС_{1}\) и \(АВС_{2}\)

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 3

Задача встречается в следующей книге: Прасолов В.В. Задачи повышенной сложности. 7 класс: учебное пособие для общеобразовательнх организаций. М. Просвещение,2019 - 80 с. ISBN 978-5-09-064083-1.

На сторонах \(АВ\) и \(ВС\) квадрата \(ABCD\) отмечены точки \(Р\) и \(Q\) так, что \(ВР = BQ\), из точки \(В\) проведён перпендикуляр \(ВН\) к прямой \(СР\). Докажите, что угол \(DHQ\) прямой (рис. 50).

Решение №17715: Пусть прямая \(ВН\) пересекает прямую \(АD\) в точке \(F\) (см. рис. ниже). Прямоугольные треугольники \(АВЕ\) и \(ВСР\) равны по катету и острому углу. Поэтому \(AF = ВР = BQ\). Следовательно, \(CDFQ\) прямоугольник. Все вершины этого прямоугольника лежат на окружности с диаметром \(FС\); на этой же окружности лежит точка \(Н\). Отрезок \(DQ \)также является диаметром этой окружности, поэтому угол \(DHQ\) прямой.

Ответ: NaN

У звезды, изображённой на рисунке, равны углы с вершинами \(А\) и \(В\), углы с вершинами \(С\) и \(Е\), а также \(АС = ВЕ\). Докажите, что \(АD=ВD\).

Решение №17719: Пусть \(F\) и \(G\) — точки пересечения отрезка \(СЕ\) с отрезками \(DB\) и \(DA\) (см. рис. ниже). Сначала докажите, что \(\Delta ACG = \Delta BEF\) (по стороне и прилежащим к ней углам), а затем докажите, что \(DF = DG\).

Ответ: NaN

На равных сторонах \(АВ\) и \(ВС\) треугольника \(АВС\) отмечены точки \(М\) и \(N\) так, что \(AN = СМ\) (рис. 10). Могут ли отрезки \(АМ\) и \(CN\) быть неравными?

Решение №17720: Проведите высоты \(АN_{1}\) и \(СМ_{1}\) и отметьте точку \(М\) на отрезке \(ВМ_{1}\) и точку \(N\) на отрезке \(CN_{1}\) так, что \(ММ_{1} = NN_{1}\) (см. рис. ниже).

Ответ: Да.

На стороне \(ВС\) треугольника \(АВС\) отмечена точка \(Е\), а на биссектрисе \(BD\) — точка \(F\) так, что \(EF\parallel AC\) и \(AF = АD\) (см. рис. ниже). Докажите, что \(АВ = ВЕ\).

Решение №17721: Треугольники \(АВF\) и \(ЕВF\) равны по стороне \(ВF\) и прилежащим к ней углам, поскольку \(\angle AFB = 180^{\circ} - \angle ADF = \angle BFE\).

Ответ: NaN

Точки D и Е лежат на продолжениях сторон \(АВ\) и \(АС\) треугольника \(АВС\) за точки В и С, биссектрисы углов \(DBC\) и \(ЕСВ\) пересекаются в точке О. Докажите, что биссектриса угла \(ВАС\) проходит через точку О.

Решение №17722: Точка \(О\) равноудалена от прямых \(DB\) и \(ВС\) и от прямых \(ЕС\) и \(СВ\), поэтому она равноудалена от прямых \(АВ\) и \(АС\). Луч \(ВО\) и точка \(С\) лежат по одну сторону от прямой \(АВ\), поэтому точки \(О\) и \(С\) лежат по одну сторону от прямой \(АВ\). Аналогично точки \(О\) и \(В\) лежат по одну сторону от прямой \(АС\). Следовательно, точка \(О\) лежит внутри угла \(ВАС\).

Ответ: NaN

На сторонах \(АВ\), \(ВС\) и \(СА\) равностороннего треугольника \(АВС\) отмечены точки \(К\), \(М\) и \(N\) так, что \(\angle MKB = \angle MNC\) и \(\angle KMB = \angle KNA\). докажите, что луч \(NB\) биссектриса угла \(KNM\)

Решение №17723: Пусть \(\angle MKB = \alpha\) и \(\angle KMB = \beta\). Тогда \(\alpha +\beta =120^{\circ}\) , поэтому \(\angle AKN = 180^{\circ}-60^{\circ}-\beta =\alpha\) и \(\angle CMN = \beta\) (рис. 117). Биссектрисы \(КВ\) и \(МВ\) внешних углов треугольника \(КМN\) пересекаются в точке \(В\), поэтому биссектриса угла \(KNM\) проходит через точку \(В\).

Ответ: NaN

Внутри равнобедренного треугольника \(АВС\) с основанием \(ВС\) и углом \(А\), равным \(80^{\circ}\), отмечена точка \(М\) так, что \(\angle MBC=30^{\circ}\) и \(\angle MCA=10^{\circ}\). Найдите угол \(МАВ\)

Решение №17724: Пусть \(О\) — точка пересечения прямой \(ВМ\) и биссектрисы угла \(А\) (рис. 120). Тогда \(\angle ACM = 10^{\circ}= \angle OCM\) и \(\angle COM = 60^{\circ} = \angle AOM\), поэтому \(М\) — точка пересечения биссектрис треугольника \(АСО\). Следовательно, \(\angle MAO = 20^{\circ}\) .

Ответ: 60

Углы \(В\) и \(С\) треугольника \(АВС\) равны \(70^{\circ}\) и \(50^{\circ}\) . На сторонах \(АВ\) и \(АС\) отмечены точки \(М\) и \(N\) так, что \(\angle MCB=40^{\circ}\) и \(\angle NBC=50^{\circ}\). Найдите угол \(NMC\)

Решение №17725: Пусть \(О\) точка пересечения прямых \(ВN\) и \(СМ\) (см. рис. ниже). Углы \(В\) и \(С\) треугольника \(ВСО\) равны \(50^{\circ}\) и \(40^{\circ}\) , поэтому \(NB\perp CM\). Отметьте на отрезке \(СО\) точку \({M}'\) так, что \(О{M}'\) = \)ОМ\). К треугольнику \(NBC\) и точке \({M}'\) получите, что \(\angle {M}'NB=60^{\circ}\) . Поэтому \(\angle NMC = \angle N{M}'O=30^{\circ}\).

Ответ: 30

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Физика, Механика, Кинематика, Средняя скорость,

Задача в следующих классах: 7 класс

Сложность задачи : 3

Задача встречается в следующей книге: Генденштейн Л. Э. Задачи по физике для основной школы с примерами решений. 7-9 классы. – 2010.

Автомобиль проехал половину пути со скоростью 60 км/ч; половину оставшегося времени он ехал со скоростью 15 км/ч, а последний участок - со скоростью 45 км/ч. Какова средняя скорость на всем пути? Ответ дайте в км/ч.

Пока решения данной задачи,увы,нет...

Ответ: 40

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Физика, Механика, Кинематика, Средняя скорость,

Задача в следующих классах: 7 класс

Сложность задачи : 3

Задача встречается в следующей книге: Генденштейн Л. Э. Задачи по физике для основной школы с примерами решений. 7-9 классы. – 2010.

Велосипедист половину времени всего движения ехал со скоростью 20 км/ч, половину оставшегося пути со скоростью 12 км/ч, а последний участок - шел со скоростью 6 км/ч. Какова средняя скорость на всем пути? Ответ дайте в км/ч.

Пока решения данной задачи,увы,нет...

Ответ: 14

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Физика, Механика, Кинематика, Средняя скорость,

Задача в следующих классах: 7 класс

Сложность задачи : 3

Задача встречается в следующей книге: Генденштейн Л. Э. Задачи по физике для основной школы с примерами решений. 7-9 классы. – 2010.

Путешественник ехал сначала на лошади, а потом на осле. Какую часть пути и какую часть всего времени движения он ехал на лошади, если средняя скорость путешественника оказалась равной 12 км/ч, скорость езды на лошади 30 км/ч, а на осле - 6 км/ч?

Пока решения данной задачи,увы,нет...

Ответ: 5/8 пути и 1/4 времени движения

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Физика, Механика, Кинематика, Средняя скорость,

Задача в следующих классах: 7 класс

Сложность задачи : 3

Задача встречается в следующей книге: Генденштейн Л. Э. Задачи по физике для основной школы с примерами решений. 7-9 классы. – 2010.

Спортсмен преодолел дистанцию 5 км. Первый километр он пробежал за 3 мин, а на каждый последующий километр у него уходило t секунд больше, чем на предыдущий. Найдите t, если известно,что средняя скорость на всем пути оказалась такой, как если бы спортсмен пробегал каждый километр за 3 мин 12 с. Ответ дайте в секундах.

Пока решения данной задачи,увы,нет...

Ответ: 6

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Физика, Механика, Кинематика, Средняя скорость,

Задача в следующих классах: 7 класс

Сложность задачи : 3

Задача встречается в следующей книге: Генденштейн Л. Э. Задачи по физике для основной школы с примерами решений. 7-9 классы. – 2010.

Турист, выйдя из палатки, шел по равнине, поднялся на гору и сразу возратился по тому же пути. При этом турист прошел 12 км, а все путешествие заняло 3 ч 30 мин. Какова длина спуска, если по равнине турист шел со скоростью 4 км/ч, вверх - со скоростью 2 км/ч, а вниз - со скоростью 6 км/ч? Ответ дайте в км.

Пока решения данной задачи,увы,нет...

Ответ: 3. Указание. Найдите сначала среднюю скорость при движении по горе.

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Физика, Механика, Кинематика, Средняя скорость,

Задача в следующих классах: 7 класс

Сложность задачи : 3

Задача встречается в следующей книге: Генденштейн Л. Э. Задачи по физике для основной школы с примерами решений. 7-9 классы. – 2010.

Можно ли решить предыдущую задачу, если все путешествие заняло 4 ч, скорость движения туриста по равнине 3 км/ч, а остальные данные остались теми же?

Пока решения данной задачи,увы,нет...

Ответ: Нет: в этом случае данных недостаточно.

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Физика, Механика, Кинематика, Средняя скорость,

Задача в следующих классах: 7 класс 8 класс

Сложность задачи : 3

Задача встречается в следующей книге: В.В. Дорофейчик 7-8 классы: сборник задач для подготовки к олимпиадам

Первую половину дистанции спортсмены пробежали с постоянной скоростью \(v_{1}=12\) км/ч, а вторую половину дистанции проехали на велосипедах с постоянной скоростью \(v_{2}=24\) км/ч. Определите среднюю скорость движения спортсмена на всей дистанции. Ответ дайте в км/ч.

Ответ: 16