Задачи

Фильтрация

Показать фильтрацию

По классам:

По предметам:

По подготовке:

По классам:

По авторам:

Вычислите: \(8\frac{2}{11}\cdot(4\frac{3}{4}\cdot\frac{4}{57}+7\frac{2}{3}\cdot\frac{9}{46})+15\cdot(5\frac{7}{8}\cdot3\frac{3}{47}-3\frac{2}{3}\cdot\frac{31}{55}) \)

Пока решения данной задачи,увы,нет...

Ответ: 254

Вычислите: \(57\cdot(3\frac{1}{3}\cdot4\frac{2}{7}-11\frac{20}{21})-(2\frac{3}{11}\cdot4\frac{2}{5}-5\frac{11}{12})\cdot3\frac{1}{7}\)

Пока решения данной задачи,увы,нет...

Ответ: 721/6

Докажите, что при всех допустимых значениях переменных выражение принимает оно и то же значение: \((\frac{a-3}{3a^{2}b})^{2}:(\frac{9-a^{2}}{18a^{3}b}:\frac{a^{2}b+3ab}{2a-6})\)

Решение №5950: \((\frac{a-3}{3a^{2}b})^{2}:(\frac{9-a^{2}}{18a^{3}b}:\frac{a^{2}b+3ab}{2a-6})=\frac{(a-3)^{2}}{3^{2}a^{4}b^{2}}:(\frac{(3-a)(3+a) \cdot 2(a-3)}{18a^{3}b \cdot ab(a+3)})=\frac{(3-a)^{2} \cdot 18a^{3}b \cdot ab(a+3)}{9a^{4}b^{2}(3-a)(3+a) \cdot 2(a-3)}=1\)

Ответ: NaN

Общее сопротивление трех параллельно соединенных проводников можно найти по формуле \(\frac{1}{R_общ}=\frac{1}{R_1}+\frac{1}{R_2}+\frac{1}{R_3}. Выразите R_общ\) как дробь от \(R_1, R_2, R_3\)

Решение №5951: \(\frac{1}{R_общ}=\frac{1}{R_1}+\frac{1}{R_2}+\frac{1}{R_3}=\frac{R_2R_3+R_1R_3+R_1R_2}{R_1R_2R_3}; R_общ \cdot (R_2R_3+R_1R_3+R_1R_2)=R_1R_2R_3; R_общ=\frac{R_1R_2R_3}{R_2R_3+R_1R_3+R_1R_2}\)

Ответ: \(\frac{R_1R_2R_3}{R_2R_3+R_1R_3+R_1R_2}\)

Вычислить \(5a\sqrt{a\sqrt{a\sqrt{a}}}-2\sqrt{a^{3}\sqrt[4]{a^{3}}}+3\sqrt[-2]{a^{-5}\sqrt[4]{a^{5}}}-4a^{2}\sqrt[-4]{a\sqrt{\frac{1}{a}}}\)

Решение №6849: \(5a\sqrt{a\sqrt{a\sqrt{a}}}-2\sqrt{a^{3}\sqrt[4]{a^{3}}}+3\sqrt[-2]{a^{-5}\sqrt[4]{a^{5}}}-4a^{2}\sqrt[-4]{a\sqrt{\frac{1}{a}}}=2a\sqrt[8]{a^{7}}\)

Ответ: \(2a\sqrt[8]{a^{7}}\)

Вычислить \(\left ( \frac{1}{\sqrt{1+x}}+\sqrt{1-x} \right ):\left ( \sqrt{1-x^{2}}+1 \right )\)

Решение №6853: \(\left ( \frac{1}{\sqrt{1+x}}+\sqrt{1-x} \right ):\left ( \sqrt{1-x^{2}}+1 \right )=\frac{1}{\sqrt{1+x}}\)

Ответ: \(\frac{1}{\sqrt{1+x}}\)

Вычислить \(\left ( \frac{ax+n^{3}}{\sqrt{a^{2}nx-an^{3}}}-\sqrt{\frac{n}{x}} \cdot \frac{2nx}{\sqrt{ax-n^{2}}\sqrt{ax}}\right ):\sqrt[4]{\frac{x}{an^{2}}-a^{-2}}\)

Решение №6854: \(\left ( \frac{ax+n^{3}}{\sqrt{a^{2}nx-an^{3}}}-\sqrt{\frac{n}{x}} \cdot \frac{2nx}{\sqrt{ax-n^{2}}\sqrt{ax}}\right ):\sqrt[4]{\frac{x}{an^{2}}-a^{-2}}=\frac{\sqrt{ax-n^{2}}}{a^{2}\sqrt[4]{ax}-\sqrt{an}}\)

Ответ: \(\frac{\sqrt{ax-n^{2}}}{a^{2}\sqrt[4]{ax}-\sqrt{an}}\)

Вычислить \(\frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}\)

Решение №6856: \(\frac{2+\sqrt{3}}{\sqrt{2}+\sqrt{2+\sqrt{3}}}+\frac{2-\sqrt{3}}{\sqrt{2}-\sqrt{2-\sqrt{3}}}=\sqrt{2}\)

Ответ: \(\sqrt{2}\)

Автомобиль движется из пункта \(A\) в пункт \(С\). От пункта \(A\) до пункта \(Б\), расположенного между \(A\) и \(С\), он идет со скоростью 48 км/ч. В пункте \(Б\) он уменьшает скорость на \(a\) (км/ч) \((0< a< 48)\) и с этой скоростью проезжает третью часть пути от \(Б\) до \(С\). Оставшуюся часть пути он едет со скоростью, которая на \(2a\) (км/ч) превышает начальную скорость. При каком значении \(a\) автомобиль быстрее всего пройдет путь от \(Б\) до \(С\)?

Пока решения данной задачи,увы,нет...

Ответ: 12

По двум улицам к перекрестку движутся два автомобиля с постоянными скоростями \(v_{1}=40\) км/ч и \(v_{2}=50\) км/ч. Известно, что в некоторый момент времени автомобили находятся от перекрестка на расстоянии \(s_{1}=2\) км и \(s_{2}=3\) км соответственно. Считая, что улицы пересекаются под прямым углом, определить, через какое время расстояние между автомобилями станет наименьшим.

Пока решения данной задачи,увы,нет...

Ответ: 23/410

Расстояние между населенными пунктами \(A\) и \(Б\) составляет 36 км. Из \(A\) и \(Б\) идет пешеход со скоростью 6 км/ч. Одновременно из \(Б\) в сторону \(A\) выезжает велосипедист со скоростью \(v\) км/ч, причем \(v\in [10;15]\). После встречи с пешеходом велосипедист еще 20 мин ехал в сторону \(A\), затем повернул и возвратился в \(Б\) . Найти минимальную и максимальную разницу во времени прибытия в \(Б\) пешехода и велосипедиста.

Пока решения данной задачи,увы,нет...

Ответ: {5/6;40/21}

Стоимость эксплуатации катера, плывущего со скоростью \(v\) км/ч, составляет \((90+0,4v^{2})\) руб. за 1ч. С какой скоростью должен плыть катер, чтобы стоимость прохода 1 км пути была наименьшей?

Пока решения данной задачи,увы,нет...

Ответ: 15

Точка \(А\) лежит на графике функции \(y=x^{2}-2x\), а точка \(B\) - на графике функции \(y=-x^{2}+14x-50\). Чему равно наименьшее значение длины отрезка \(АB\)?

Пока решения данной задачи,увы,нет...

Ответ: 2\sqrt{5}

К графику функции \(y=\frac{1}{x^{2}}\) в точке, абсцисса \(\alpha \) которой принадлежит отрезку \([5;9]\) проведена касательная.Какова наибольшая площадь \(S\) треугольника, ограниченного этой касательной, осью абсцисс и прямой \( x=4\), является наибольшей?

Пока решения данной задачи,увы,нет...

Ответ: 0.125

Найдите множество значений последовательности \(a_{1}=1, a_{2}=2, a_{n+2}=\frac{a_{n+1}}{a_{n}} \)

Решение №7335: Выпишем несколько первых членов последовательности: \(1; 2; 2; 1; \frac{1}{2}; \frac{1}{2}; 1; 2; 2\). Ясно(и легко проверяется по индукции), что последовательность \(\left \{ a_{n} \right \} \)переодична и период равен 6, иначе говоря, \(\forall n\in N a_{n}=a_{n+6}. Тогда \left \{ \frac{1}{2}; 1; 2 \right \}\) - множество значений этой последовательности.

Ответ: \left \{ \frac{1}{2}; 1; 2 \right \}

Определите, является ли последовательность ограниченной сверху, ограниченной снизу, ограниченной: \(x_{n}=n^{2}-2n-1\)

Решение №7336: Из неравенства \(x_{n}=n^{2}-2n-1\geqslant -2\) следует, что последовательность \(\left \{ x_{n} \right \}\) ограничена снизу. Так как множество значений квадратичной функции \(f\left ( x \right )=x^{2}-2x-1\) при натуральных значениях аргумента не ограничено сверху, то последовательность не ограничена сверху.

Ответ: NaN

Определите, является ли последовательность ограниченной сверху, ограниченной снизу, ограниченной: \(x_{n}=\frac{\cos n}{n} \)

Решение №7340: Для любого натурального n выполнено неравенство \(\left | \frac{\cos }{n} \right |=\frac{\left | \cos n \right |}{n}\leqslant \frac{1}{n}\leqslant 1\). Значит, последовательность \(\left \{ x_{n} \right \}\) ограниченная.

Ответ: NaN

Определите, является ли последовательность ограниченной сверху, ограниченной снизу, ограниченной: \(x_{n}=\frac{2^{n}}{n!} \)

Решение №7344: Доказано, что с помощью метода математической индукции, что при \(n\geqslant 4 2^{n}< n!\). Тогда \(\forall n\geqslant 4 0< x_{n}< 1\),т.е. последовательность \(\left \{ x_{n} \right \} \)ограничена.

Ответ: NaN

Известно, что последовательность \(\left \{ x_{n} \right \} \)ограничена. Выясните, является ли последовательность \(\left \{ y_{n} \right \}\) ,обязательно ограниченной,может ли она быть ограниченной, или всегда является неограниченной (если последовательность \(\left \{ y_{n} \right \}\) существует):\( y_{n}=\frac{1}{x_{n}} \)

Решение №7347: Необязательно ограничена. Например, \(x_{n}=\frac{1}{n} \)

Ответ: NaN

Известно, что последовательность \(\left \{ x_{n} \right \}\) ограничена. Выясните, является ли последовательность \(\left \{ y_{n} \right \} \),обязательно ограниченной,может ли она быть ограниченной, или всегда является неограниченной (если последовательность \(\left \{ y_{n} \right \} \)существует):\(y_{n}=x_{n}*n \)

Решение №7350: Необязательно ограничена. Например, при \(x_{n}=\frac{1}{\sqrt{n}}\) получаем \(y_{n}=\sqrt{n} \)

Ответ: NaN

Известно, что последовательности \(\left \{ x_{n} \right \}\) и \(\left \{ y_{n} \right \} \)являются неограниченными. Выясните, является ли последовательность \(\left \{ z_{n} \right \}\) и,обязательно ограниченной,может ли она быть неограниченной, или всегда является ограниченной (если последовательность \(\left \{ z_{n} \right \}\) существует):\(z_{n}=x_{n}-y_{n} \)

Решение №7353: Так как последовательности \(\left \{ x_{n} \right \}\) и \(\left \{ y_{n} \right \}\)ограничены, существуют такие числа A и B, что \(\forall n\in N \left ( \left | x_{n} \right |\leqslant A \right )\wedge \left ( \left | y_{n} \right |\leqslant B \right ) \) Неравенства \(\left | x_{n}-y_{n} \right |\leqslant \left | x_{n} \right |+\left | y_{n} \right |\leqslant A+B\) показывают, что последовательность \(z_{n}=x_{n}+y_{n}\) обязательно ограничена.

Ответ: NaN

Известно, что последовательности \(\left \{ x_{n} \right \}\) и \(\left \{ y_{n} \right \}\) являются неограниченными. Выясните, является ли последовательность \(\left \{ z_{n} \right \}\) и,обязательно ограниченной,может ли она быть неограниченной, или всегда является ограниченной (если последовательность \(\left \{ z_{n} \right \}\) существует):\(z_{n}=\sin x_{n}+\cos y_{n} \)

Решение №7355: Так как последовательности \(\left \{ x_{n} \right \} и \left \{ y_{n} \right \}\) ограничены, существуют такие числа A и B, что \(\forall n\in N \left ( \left | x_{n} \right |\leqslant A \right )\wedge \left ( \left | y_{n} \right |\leqslant B \right )\) Каждый член последовательности по модулю не превосходит 2, поэтому последовательность ограничена независимо от ограниченности исходных последовательностей.

Ответ: NaN