Задачи

Фильтрация

Показать фильтрацию

По классам:

По предметам:

По подготовке:

По классам:

По авторам:

В равнобедренном треугольнике \(АВС\) с основанием \(АС\) проведены биссектрисы и \(СЕ\). Докажите, что \(АЕ = ED = DC\).

Решение №17246: Треугольники \(АСЕ\) и \(СAD\) равны по стороне и прилежащим к ней углам. Поэтому равны их высоты, проведённые к стороне \(АС\). Следовательно, \(ED\parallel АС\).

Ответ: NaN

В треугольниках \(АВС\) и \(А_{1}В_{1}С_{1}\) проведены биссектрисы \(CD\) и \(С_{1} D_{1}\) . Известно, что \(АВ = А_{1}В_{1}\), CD = С_{1} D_{1} и \(\angle ADC = \angle A_{1}D_{1}C_{1}\). Докажите, что треугольники \(АВС\) и \(А_{1}В_{1}С_{1}\) равны.

Решение №17247: Совместите стороны \(АВ\) и \(А_{1}В_{1}\) данных треугольников так, чтобы точки \(С\) и \(С_{1}\) лежали по одну сторону от прямой \(АВ\). Если прямые \(CD\) и \(С_{1}D_{1}\) совпадают, то точки \(С\) и \(С_{1}\) тоже совпадают. Если же эти прямые не совпадают, то они параллельны. В таком случае угол \(\alpha\) (рис. ниже) является внешним углом треугольника с углом \(\beta\) , а угол \(\beta\) является внешним треугольником углом \(\alpha\). Поэтому \(\alpha > \beta\) и \(\beta > \alpha\) , чего не может быть.

Ответ: NaN

При пересечении прямых \(а\) и \(b\) секущей образовалось восемь углов, четыре из которых равны \(70^{\circ}\) , а четыре других равны \(110^{\circ}\) . Обязательно ли прямые \(а\) и \(b\) параллельны?

Решение №17249: Прямые \(a\) и \(b\) могут содержать стороны равнобедренного треугольника, а секущая его основание.

Ответ: Нет.

При пересечении прямых \(а\) и \(b\) секущей образовалось восемь равных углов. Обязательно ли прямые \(а\) и \(b\) параллельны?

Решение №17250: Прямые \(а\) и \(b\) перпендикулярны секущей

Ответ: Да.

Даны две прямые \(а\) и \(b\). Докажите, что если любая прямая, пересекающая прямую \(а\), пересекает и прямую \(b\), то \(а \parallel b\).

Решение №17251: Пусть любая прямая, пересекающая прямую \(a\), пересекает и прямую \(b\). Предположим, что прямые \(a\) и \(b\) пересекаются в некоторой точке \(A\). Проведем через точку прямой \(a\), отличную от точки \(A\) , прямую, параллельную прямой \(b\). Эта прямая пересекает прямую \(a\) и не пересекает прямую \(b\).

Ответ: NaN

На сторонах \(АВ\) и \(АС\) остроугольного треугольника \(АВС\) как на диаметрах построены окружности. Прямая, проходящая через вершину \(А\) параллельно стороне \(ВС\), пересекает эти окружности в точках \(М\) и \(N\). Докажите, что \(МN = ВС\).

Решение №17252: Проведем высоту \(AH\) (см. рис. ниже). Пусть для определенности точка \(M\) лежит на окружности с диаметром \(AB\). Тогда угол \(AMB\) прямой и прямоугольные треугольники \(ABM\) и \(BAN\) равны по гипотенузе и острому углу.

Ответ: NaN

На стороне \(ВС\) равностороннего треугольника \(АВС\) отмечена точка \(М\), а на продолжении стороны \(АС\) за точку \(С\) отмечена точка \(N\) так, что \(АМ = МN\) . Докажите, что \(BМ = CN\).

Решение №17253: Пусть прямая, проходящая через точку \(М\) параллельно прямой \(АС\), пересекает прямую \(АВ\) в точке \(Р\) (рис. 149). Тогда \(\angle CNM = \angle MAN = \angle PМА\). В треугольниках \(MNC\) и \(АМР\), помимо углов \(N\) и \(М\), равны также углы \(С\) и \(Р\), поэтому равны и углы \(М\) и \(А\). Следовательно, эти треугольники равны по стороне (\(МN = АM\)) и прилежащим к ней углам, поэтому \(CN = РМ = ВМ\).

Ответ: NaN

В остроугольном треугольнике \(АВС\) проведена высота \(СН\). Докажите, что если \(АН = ВС\), то биссектриса угла \(В\), высота \(AD\) и прямая, проходящая через точку Н параллельно стороне \(ВС\), пересекаются в одной точке.

Решение №17254: Рассмотрим точку \(К\), в которой пересекаются высота \(АD\) и прямая, проходящая через точку \(Н\) параллельно стороне \(ВС\), и покажем, что луч \(ВК\) - биссектриса угла \(В\) (рис. 150). Действительно, прямоугольные треугольники \(АНК\) и \(СВН\) равны по гипотенузе и острому углу, поэтому \(НК = НВ\), а значит, \(\angle HBK = \angle HКВ = \angle КВС\).

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Геометрические места точек (ГМТ), свойства биссектрисы как ГМТ,

Задача в следующих классах: 7 класс

Сложность задачи : 3

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Докажите, что, если в треугольнике один угол равен \(120^{o}\), то треугольник, образованный основаниями его биссектрис, прямоугольный.

Решение №17260: Внешний угол с вершиной \(А\) треугольника \(АВС\) равен \(60^{\circ}\) (см. рис. ниже). Поэтому луч \(АВ_{1}\) является биссектрисой внешнего угла треугольника \(АВА_{1}\) . Луч \(ВВ_{1}\) является биссектрисой угла \(В\) этого треугольника. Поэтому луч \(А_{1} В_{1}\) является биссектрисой угла \(АА_{1}С\). Аналогично луч \(А_{1}С_{1}\) является биссектрисой угла \(АА_{1}В\). Угол между биссектрисами двух смежных углов равен \(90^{\circ}\).

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Геометрические места точек (ГМТ), свойства биссектрисы как ГМТ,

Задача в следующих классах: 7 класс

Сложность задачи : 3

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

В треугольнике \(ABC\) с углом \(B\), равным \(120^{o}\) , биссектрисы \(AE\), \(BD\) и \(CM\) пересекаются в точке \(O\). Докажите, что \(∠DMO = 30^{o}\) .

Пока решения данной задачи,увы,нет...

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Задачи на построение с помощью циркуля и линейки,

Задача в следующих классах: 7 класс

Сложность задачи : 3

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Из точки вне прямой опустите перпендикуляр на эту прямую с помощью циркуля и линейки, проведя не более трех линий.

Пока решения данной задачи,увы,нет...

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, касательная к окружности,

Задача в следующих классах: 7 класс

Сложность задачи : 3

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

На сторонах \(BC, CA\) и \(AB\) треугольника \(ABC\) взяты соответственно точки \(A_{1}, B_{1} \) и \(C_{1}\), причем \( AC_{1} = AB_{1}, BA_{1} = BC_{1}\) и \(CA_{1} = CB_{1}\). Докажите, что \(A_{1}, B_{1} \) и \(C_{1}\) — точки касания вписанной окружности со сторонами треугольника.

Решение №17347: Обозначим \(AC_{1} = AB_{1} = x, BA_{1} = BC_{1} = y, CA_{1} = CB_{1} = z, AB = c, AC = b, BC = a\) (рис. 172). Тогда \( x + z = b, x + y = c, z + y = a\). Из полученной системы уравнений находим, что \(AB_{1} = x = \frac{1}{2}\left ( b+c-a \right )=p-a \) , т.е. точка \(B_{1}\) совпадает с точкой касания вписанной окружности со стороной \(AC\). Аналогично для точек \(A_{1}\) и \(C_{1}\).

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, касательная к окружности,

Задача в следующих классах: 7 класс

Сложность задачи : 3

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Суммы противоположных сторон выпуклого четырехугольника равны между собой. Докажите, что все стороны четырехугольника касаются некоторой окружности.

Решение №17348: Первый способ. Пусть \(AB + CD = BC + AD\) и прямые \(AB\) и \(CD\) пересекаются в точке \(M\). Впишем окружность в треугольник \(AMB\). Пусть она полностью содержится в четырехугольнике \(ABCD\) (см. рис. ниже,а). Докажем, что она касается \(BC\). Если это не так, то проведем через точку \(B\) касательную к окружности, пересекающую \(CD\) в точке \(C_{1}\). Тогда \(AB + CD = BC + AD и AB + C_{1}D = BC_{1} + AD\). Вычитая почленно эти равенства, получим \(CC_{1} + BC_{1} = BC\), что невозможно. Аналогично рассматриваются остальные случаи. Второй способ. Пусть \(AB + CD = BC + AD − AD = BC − CD\). Рассмотрим случай, когда \( AB> AD \)(см. рис. ниже,б). Тогда \( BC > CD\). На отрезке \(AB\) возьмем такую точку \(T\), чтобы \( AT = AD\), а на отрезке \(BC\) — такую точку \(S\), чтобы \(CS = CD\). Тогда треугольники \(TBS, ADT\) и \(CDS\) равнобедренные. Биссектрисы их углов при вершинах \( B, A\) и \(C\) являются серединными перпендикулярами к отрезкам \(TS, DT\) и \(DS\) соответственно, т.е. серединными перпендикулярами к сторонам треугольника \(DTS\). Поэтому биссектрисы углов \(B, A\) и \(C\) пересекаются в одной точке — центре описанной окружности треугольника \(DTS\). Эта точка равноудалена от всех сторон четырехугольника \(ABCD\). Следовательно, она является центром вписанной окружности четырехугольника \(ABCD\). Аналогично для \(AB < AD\). Если же \(AB = AD\), то утверждение очевидно.

Ответ: NaN

Точка \(C\) лежит внутри прямого угла \(AOB\). Докажите, что периметр треугольника \(ABC\) больше \(2OC\).

Решение №17400: Пусть \( C_{1}\) — точка, симметричная точке \(C\) относительно прямой\( OA\) (см. рис. ниже), а \(C_{2}\) симметрична \(C\) относительно прямой \(OB\). Тогда точки \(C_{1}, O\) и \(C_{2}\) лежат на одной прямой, так как \( \angle C_{1}OC_{2} = \angle C_{1}OC + \angle COC_{2} = 2(\angle AOC + \angle COB) = 2 · 90^{\circ} = 180^{\circ}\). Следовательно, \(AC + BC + AB = AC_{1} + BC_{2} + AB > C_{1}C_{2} = 2OC\).

Ответ: NaN

Пусть вписанная окружность касается сторон \(AC\) и \(BC\) треугольника \(ABC\) в точках \(B_{1}\) и \(A_{1}\). Докажите, что если \(AC > BC\), то \(AA_{1} > BB_{1}\).

Решение №17401: Пусть \(B_{2}\) — точка, симметричная точке \(B\) относительно биссектрисы угла \(ACB\) (см. рис. ниже). Тогда \(BB_{1} = B_{2}A_{1}\). Рассмотрим треугольник \(AB_{2}A_{1}\). В этом треугольнике \( \angle AB_{2}A_{1} > \angle AB_{2}B = 180^{\circ} − CB_{2}B= 180◦ − \frac{1}{2}(180^{\circ} − \angle C) = 90^{\circ} + \frac{1}{2} + \angle C > 90^{\circ}\). Следовательно, \(BB_{1} = A_{1}B_{2} < AA_{1}\).

Ответ: NaN

Точка \(M\) расположена внутри треугольника \(ABC\). Докажите, что \(BM + CM < AB + AC\).

Решение №17402: Продолжим \(BM\) до пересечения со стороной \(AC\) в точке \(N\) (см. рис. ниже). Тогда \( AB + AN > BN = BM + MN и MN + NC > MC\). Сложив почленно эти неравенства, получим \(AB + AN + NC + MN > MN + BM + MC\), или \(AB + AC + MN > BM + MC + MN\). Отсюда следует, что \(AB + AC > BM + MC\).

Ответ: NaN

Докажите, что сумма расстояний от любой точки внутри треугольника до трех его вершин больше полупериметра, но меньше периметра треугольника.

Решение №17403: Cледует, что для точки \(M\), лежащей внутри треугольника \(ABC\) (см. рис. ниже), верны неравенства \(MB + MC < AB + AC, MB + MA < AC + BC, MA + MC < AB + BC\). Сложив их почленно, получим \(2(MA + MB + MC) < 2(AB + BC + AC)\). Отсюда следует, что указанная сумма расстояний меньше периметра треугольника. Применяя неравенство треугольника к треугольникам \(AMC, BMC\) и \(AMB\), получим \(AM + MC > AC, BM + MC > BC и AM + MB > AB\), откуда \( AM+BN+CM> \frac{1}{2}\left ( AB+AC+BC \right ) \) .

Ответ: NaN

Высота треугольника в два раза меньше его основания, а один из углов при основании равен \( 75^{\circ} \). Докажите, что треугольник равнобедренный.

Решение №17404: Пусть в треугольнике \(ABC\) угол \(BAC\) равен \( 75^{\circ}\), а высота \(BN\) вдвое меньше стороны \(AC\) (см. рис. ниже). Докажем, что \(BC = AC\). Предположим, что \(BC < AC\). Тогда \( \angle ABC> 75^{\circ}, \angle ACB< 30^{\circ}, BN< \frac{1}{2}BC< \frac{1}{2}AC \) что противоречит условию. Аналогично докажем, что \(BC\) не может быть больше \(AC\).

Ответ: NaN

Угол при вершине равнобедренного треугольника равен \( 20^{\circ} \). Докажите, что боковая сторона больше удвоенного основания, но меньше утроенного.

Решение №17405: На боковой стороне \(AC\) данного равнобедренного треугольника \(ABC\) отложим отрезок \(CD\), равный основанию \(BC\) (рис. 216,а). Тогда \( \angle ABD = 80^{\circ} −50^{\circ} = 30^{\circ}\), значит, в треугольнике \(ABD\) угол \(ABD\) больше угла \(BAD\), поэтому \(AD > BD > BC\) (в равнобедренном треугольнике \(BDC\) основание \(BD\) лежит против большего угла \(C\)). Следовательно, \( AC = AD + CD > BC + CD = 2BC\). Пусть точка \(B_{1}\) симметрична точке \(B\) относительно прямой \(AC\), а точка \(B_{2}\) симметрична \(C\) относительно \(AB_{1}\) (рис. 216,б). Тогда \(\angle BAB_{2} = 3\angle BAC = 60^{\circ} и AB_{2} = AB\), поэтому треугольник \(BAB_{2}\) равносторонний. Следовательно, \(AB = BB_{2} < BC + CB_{1} + B_{1}B_{2} = 3BC\).

Ответ: NaN

Сколько сторон может иметь выпуклый многоугольник, все диагонали которого равны?

Решение №17406: У квадрата и правильного пятиугольника все диагонали равны. Докажем, что других выпуклых многоугольников со всеми равными диагоналями не существует. Предположим, что все диагонали выпуклого многоугольника \(A_{1}A_{2} ...A_{1}\) равны и \(n \geqslant 6\) (рис. 217). Рассмотрим выпуклый четырехугольник \(A_{1}A_{2}A_{4}A_{5}\). Сумма длин его диагоналей \(A_{1}A_{4} \)и \(A_{2}A_{5}\) больше суммы противоположных сторон \(A_{2}A_{4}\) и \(A_{1}A_{5}\), что невозможно, так как по предположению эти суммы равны.

Ответ: 4 или 5.

В некотором царстве, в некотором государстве есть несколько городов, причем расстояния между ними все попарно различны. В одно прекрасное утро из каждого города вылетает по одному самолету, который приземляется в ближайшем городе. Может ли в одном городе приземлиться более пяти самолетов?

Решение №17407: Допустим, что в городе \(P\) приземляется, например, 6 самолетов,вылетевших из городов \(A_{1}, A_{2}, ..., A_{6}\), и точки \(A_{1}, A_{2}, ..., A_{6}\) — последовательные вершины шестиугольника (см. рис. ниже). Так как расстояние между городами \(A_{1}\) и \(A_{2}\) должно быть больше, чем расстояние от каждого из них до города \(P\), то \( \angle A_{1}PA_{2} > 60^{\circ}\) . Аналогично, углы \(A_{2}PA_{3}, A_{3}PA_{4}, A_{4}PA_{5}, A_{5}PA_{6}, A_{6}PA_{1}\) больше \(60^{\circ}\). Но тогда полный угол при точке \(P\) будет превосходить \(360^{\circ}\), что невозможно.

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Задачи на построение с помощью циркуля и линейки,

Задача в следующих классах: 7 класс

Сложность задачи : 3

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Постройте окружности с центрами в трех данных точках, попарно касающиеся друг друга внешним образом.

Пока решения данной задачи,увы,нет...

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Задачи на построение с помощью циркуля и линейки,

Задача в следующих классах: 7 класс

Сложность задачи : 3

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Даны три точки \(A, B\) и \(C\). Постройте три окружности, попарно касающиеся в этих точках.

Решение №17415: Рассмотрим случай внешнего касания (см. рис. ниже). Предположим, что окружности \(S_{1}, S_{2}\) и \(S_{3}\) построены. Пусть \(S_{1}\) и \(S_{2}\) касаются в точке \(C, S_{1}\) и \(S_{3}\) — в точке \(B, S_{2} и \(S_{3}\) — в точке \(A\). Пусть \(O_{1}, O_{2}\) и \(O_{3}\) — центры окружностей \( S_{1}, S_{2}\) и \(S_{3}\) соответственно. Тогда точки \(A, B\) и \(C\) лежат на сторонах треугольника \(O_{1}O_{2}O_{3}\), причем \(O_{1}B = O_{1}C, O_{2}C = O_{2}A, O_{3}A = O_{3}B\). Точки \(A, B\) и \(C\) являются точками касания вписанной окружности треугольника \(O_{1}O_{2}O_{3}\) с его сторонами. Отсюда вытекает следующий способ построения. Строим описанную окружность треугольника \(ABC\) и проводим к ней касательные в точках \(A, B\) и \(C\). Точки пересечения этих касательных есть центры искомых окружностей. Если каждая из двух окружностей, касающихся между собой внешним образом, внутренне касается третьей окружности, то аналогично можно доказать, что точки их попарного касания являются точками касания прямых, содержащих стороны треугольника \(O_{1}O_{2}O_{3}\), с вневписанной окружностью этого треугольника.

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Задачи на построение с помощью циркуля и линейки,

Задача в следующих классах: 7 класс

Сложность задачи : 3

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Внутри острого угла даны точки \(M\)и \(N\). Постройте на сторонах угла точки \(K\) и \(L\) так, чтобы периметр четырехугольника \(MKLN\) был наименьшим.

Решение №17418: Рассмотрите точки, симметричные точкам \(M\) и \(N\) относительно сторон данного угла.

Ответ: NaN

Найти целое положительное число n из уравнения \((3+6+9+...+3(n-1))+\left ( 4+5,5+7+...+\frac{8+3n}{2} \right)=137\).

Пока решения данной задачи,увы,нет...

Ответ: 7

Найти сумму всех четных трехзначных чисел. делящихся на 3.

Пока решения данной задачи,увы,нет...

Ответ: 82350

Найти сумму всех трехзначных чисел, делящихся на 7.

Пока решения данной задачи,увы,нет...

Ответ: 70336

Найти сумму \(\left(2+\frac{1}{2}\right)^{2}+\left(4+\frac{1}{4}\right)^{2}+...+\left (2^{n}+\frac{1}{2^{n}} \right)^{2}\)

Пока решения данной задачи,увы,нет...

Ответ: 2n+\frac{(4^{n}-1)(4^{n+1}+1)}{3\cdot 4^{n}}

Решить уравнение \(\frac{x-1}{x}+\frac{x-2}{x}+\frac{x-3}{x}+...+\frac{1}{x}=3\), где x – целое положительное число.

Пока решения данной задачи,увы,нет...

Ответ: 7

Известно, что при любом n сумма n первых членов некоторой числовой последовательности выражается формулой \(S_{n}=2n^{2}+3n\). Найти десятый член этой последовательности.

Пока решения данной задачи,увы,нет...

Ответ: 41