Задачи

Фильтрация

Показать фильтрацию

По классам:

По предметам:

По подготовке:

По классам:

По авторам:

Решить уравнения: \( \lg \left ( 625\sqrt[5]{5^{x^{2}-20x +55}} \right )=0 \)

Решение №17532: Из условия имеем \( 625*5^{\frac{x^{2}-20x+55}{5}}=1, 5^{\frac{x^{2}-20x+55}{5}}=5^{-4} \) , откуда \( \frac{x^{2}-20x+55}{5}=-4, x^{2}-20x +75=0 \) . Тогда \( x_{1}=5; x_{ 2}=15 \)

Ответ: 5; 15

Решить уравнения: \( \log _{5}x+\log _{x}25=\coth ^{2}\frac{25\pi }{6} \)

Решение №17533: ОДЗ: \( 0< x\neq 1 \) Перейдем к основанию 5. Имеем \( \log _{5}x+\frac{2}{\log _{5}x}=\left ( \coth \left ( 4\pi +\frac{\pi }{6} \right ) \right )^{2}, \log _{5}x+\frac{2}{\log _{5}x}=3\Rightarrow \log _{2}^{5}x-3\log _{5}x+2=0 \) Решая это уравнение как квадратное относительно \( \log _{5}x \), получаем \( \left (\log _{5}x \right )_{1}=1 \) или \( \left ( \log _{5}x \right )_{2}=2 \), откуда \( x_{1}=5; x_{2}=25 \)

Ответ: 5; 25

Решить уравнения: \( \log _{6}\sqrt[7]{3^{x\left ( 15-x \right )}}+8\log _{6}2= 8 \)

Решение №17535: Из условия \( \log _{6}3^{x\left ( 15-x \right )/7}+\log _{6}2^{8}=8, \log _{6}\left ( 3^{x\left ( 15-x \right )/7}*2^{8} \right )=8 \) Отсюда \( \left ( 3^{x\left ( 15-x \right )/7}*2^{8}=6^{8}, 3^{x\left ( 15-x \right )/7}=3^{8} \) Тогда \( \frac{x\left ( 15-x \right )}{7}=8, x^{2}-15x+56=0 \), откуда \( x_{1}=7, x_{2}=8\)

Ответ: 7; 8

Решить уравнения: \( 2.5^{\frac{4+\sqrt{9-x}}{\sqrt{9-x}}}*0.4^{1-\sqrt{9-x}}=5^{10}*0.1^{5} \)

Решение №17639: ОДЗ: \( 9-x> 0, x< 9 \) Перепишем уравнение в виде \( \left ( \frac{5}{2} \right )^{\frac{4+\sqrt{9-x}}{\sqrt{9-x}}} *\left ( \frac{5}{2} \right )^{\sqrt{9-x}-1}=\left ( \frac{5}{2} \right )^{\frac{4+\sqrt{9-x}}{\sqrt{9-x}}+\sqrt{9-x}-1}=\left ( \frac{5}{2} \right )^{ 5} \) Тогда \( \frac{4+\sqrt{9-x}}{\sqrt{9-x}}+\sqrt{9-x}-1=5, 13-x=5\sqrt{9-x}\Rightarrow \left\{\begin{matrix}x^{2}-x-56=0 & & \\ x< 9 & & \end{matrix}\right.\), откуда \( x_{1}=-7, x_{2}=8 \)

Ответ: -7.8

Решить уравнения: \( 5^{2\left ( \log _{5}2+x \right )}-2=5^{x+\log _{5}2} \)

Решение №17640: \( \left ( 5^{x+\log _{5}2} \right )^{2}-5^{x+\log _{5}2}-2=0 \); решив это уравнение как квадратное относительно \( 5^{x+\log _{5}2} \), найдем \( 5^{x+\log _{5}2}=-1\) и \(5^{x+\log _{5}2}=2; 5^{x+\log _{5}2}=-1 \) не имеет решений. Таким образом, \( 5^{x+\log _{5}2}=2\Rightarrow \log _{5}5^{x+\log _{5}2}=log_{5}2, x+\log _{5}2=\log _{5}2 \), откуда \( x=0 \)

Ответ: 0

Решить уравнения: \( 3*5^{2x-1}-2*5^{x-1}=0.2 \)

Решение №17656: Из условия \( 3*5^{2x}-2*5^{x}=1, 3*5^{2x}-2*5^{x}-1 =0 \) Решая это уравнение как квадратное относительно \( 5^{x} \), получаем \( 5^{x}=-\frac{1}{3}, \varnothing \); или \( 5^{x}=1 \), откуда \( x = 0 \)

Ответ: 0

Решить уравнения: \( \lg \left ( 3-x \right )-\frac{1}{3}\lg \left ( 27-x^{3} \right )=0 \)

Решение №17657: ОДЗ: \( 3-x> 0, x< 3 x \) Перепишем уравнение в виде \( 3\lg \left ( 3-x \right )=\lg \left ( 27-x^{3} \right ), \lg \left ( 3-x \right )^{3}=\lg \left ( 27-x^{3} \right ) \) Тогда \( \left ( 3-x \right )^{3}=27-x^{3}\Rightarrow x^{2}-9x=0 \), откуда \( x_{1}=0, x_{2}=9; x_{2}=9 \) не подходит по ОДЗ.

Ответ: 0

Решить уравнения: \( \log _{2}\left ( 9-2x \right )=10^{\lg \left ( 3-x \right )} \)

Решение №17658: ОДЗ: \( \left\{\begin{matrix} 9-2^{x}> 0 & & \\ 3-x> 0 & & \end{matrix}\right.x< 3 \) Имеем \( \log _{2}\left ( 9-2x \right )=3-x, 9-2x=2^{3-x}. 2^{2x}-9*2^{x}+8=0 \) Решая это уравнение как квадратное относительно \( 2^{x} \), имеем \( \left ( 2^{x} \right )_{1}=1 \), или \( \left ( 2^{x} \right )_{2}=8 \), откуда \( x_{1}=0, x_{2}=3; x_{2}=3\) не подходит по ОДЗ.

Ответ: 0

В двух сосудах содержатся растворы кислоты; в первом сосуде 70%-ный, во втором – 46%-ный. Из первого сосуда 1л раствора перелили во второй, и жидкость во втором сосуде перемешали. Затем из второго сосуда 1л раствора перелили в первый и также перемешали. После этого концентрация кислоты в первом сосуде стала равна 68%. Сколько жидкости было во втором сосуде, если известно, что в первом ее было 10л?

Пока решения данной задачи,увы,нет...

Ответ: 5

Показать, что при условии \( x> 0 \) и \( y> 0 \) из равенства \( x^{ 2} + 4y^{ 2} = 12xy \) следует равенство \( \lg \left ( x+2y \right ) -2\lg 2 = 0.5\left ( \lg x+\lg y \right ) \)

Решение №17669: Из условия имеем: \( \left( x+2y \right )^{2}-2x*2y=12xy , \left ( x+2y \right )^{2}=16xy \) Прологарифмировав обе части полученного равенства по основанию 10, получим: \( \lg \left ( x+2y \right )^{2}=\lg 16xy , 2\lg \left ( x+2y \right )=\lg 16+\lg x+\lg y , 2\lg \left ( x+2y \right )=4\lg 2+\lg x+\lg y , \lg \left ( x+2y \right )-2\lg 2= 0.5\left ( \lg x +\lg y \right ) \)

Ответ: \( \lg \left ( x+2y \right )^{2}=\lg 16xy , 2\lg \left ( x+2y \right )=\lg 16+\lg x+\lg y , 2\lg \left ( x+2y \right )=4\lg 2+\lg x+\lg y , \lg \left ( x+2y \right )-2lg2= 05\left ( \lg x +\lg y \right ) )\

Решить уравнения: \( 3*4^{\log _{x}2}-46*2^{\log _{x}2-1}=8 \)

Решение №17672: ОДЗ: \( 0< x\neq 1 \) Имеем \( 3*2^{2\log _{x}2}-23*2^{\log _{x}2}-8=0 \) Решая уравнение как квадратное относительно \( 2\log _{x}2 \), найдем \( 2\log _{x}2=-\frac{1}{3}, \varnothing \); или \( 2\log _{x}2=8 \), откуда \( \log _{x}2=3, x=\sqrt[3]{2} \)

Ответ: \( \sqrt[3]{2} )\

Решить уравнения: \( \left ( \log _{2}x-3 \right \)log _{2}x+2\left ( \log _{2}x+1 \right \)log _{2}\sqrt[3]{2}=0 \)

Решение №17673: ОДЗ: \( x> 0 \) Из условия \( \log _{2}\sqrt[3]{2}=\log _{2}2^{\frac{1}{3}}=\frac{1}{3}, \log _{2}^{2}x-3\log _{2}x+\frac{2}{3}\log _{2}x+\frac{2}{3}=0, 3\log _{2}^{2}x-7\log _{2}x+2=0 \) Решая уравнение как квадратное относительно \( \log _{2}x \), имеем \( \left ( \log _{2}x \right )_{1}=\frac{1}{3} \), или \( \left ( \log _{2}x \right )_{2}=2 \), откуда \( x_{1}=\sqrt[3]{2}, x_{2}=4 \)

Ответ: \( \sqrt[3]{2}; 4 )\

Решить уравнения: \( \log _{x\sqrt{2}}-\log _{x}^{2}\sqrt{2}\log _{3x}27-\log _{x}\left ( 2x \right ) \)

Решение №17674: ОДЗ: \( 0< x\neq 1 \) Перепишем уравнение в виде \( \frac{1}{2}\log _{x}2-\frac{1}{4}\log _{x}^{2}2=3-\log _{x}2-1,\log _{x}^{2}2-6\log _{x}2+8=0 \) Решая это уравнение как квадратное относительно \( \log _{x}2 \), найдем \( \log _{x}2=2, \log _{x}2=4 \), откуда \( x^{2}=2 , x^{4}=2 \) Тогда \( x_{1}=-\sqrt{2}, x_{2}=\sqrt{2}, x_{3}=-\sqrt[4]{2}, x_{4}=\sqrt[4]{2}, x_{1}=-\sqrt{2}, x_{3}=-\sqrt[4]{2} не подходят по ОДЗ.

Ответ: \( \sqrt[4]{2}; \sqrt{2} )\

Решить уравнения: \( \sqrt{\log _{a}x}+\sqrt{\log _{x}a}=\frac{10}{3} \)

Решение №17676: Из условия \( \left\{\begin{matrix} \log _{a}x\geq 0, & & & \\ 0< a\neq 1, & & & \\ 0< x\neq 1 & & & \end{matrix}\right. \sqrt{\log _{a}x}+\frac{1}{\sqrt{\log _{a}x}}-\frac{10}{3}=0 \Rightarrow 3\left ( \sqrt{\log _{a}x} \right )^{2}-10\sqrt{\log _{a}x}+3=0 \) Решая это уравнение как квадратное относительно \( \sqrt{\log _{a}x} \), получаем \( \left ( \sqrt{\log _{a}x} \right )_{1}=\frac{1}{3}, \left ( \log _{a}x \right )_{1}=\frac{1}{9} \), откуда \( x_{1}=\sqrt[9]{a} \), или \( \left ( \sqrt{\log _{a}x} \right )_{2}=3, \left ( log_{a}x \right )_{2}=9 \), откуда \( x_{2}=a^{9} \)

Ответ: \( \sqrt[9]{a} ; a^{9}, 0< a\neq 1 )\

Решить уравнения: \( 9^{x^{2}-1}-36*3^{x^{2}-3}+3=0 \)

Решение №17677: Имеем \( \frac{9^{x^{2}}}{9}-36*\frac{3^{x^{2}}}{27}+3=0, 3^{2x^{2}}-12*3^{x^{2}}+27=0 \) Решив уравнение как квадратное относительно \( 3^{ x^{2}} \), получим \( 3^{ x^{2}}= 3 \), откуда \( x^{2}= 1 x_{1,2}=\pm 1 \), или \( 3^{ x^{2}} = 9 \), откуда \( x^{ 2} = 2 , x_{3,4}=\pm 2 \)

Ответ: \( -\sqrt{2}; -1; 1; \sqrt{2} )\

Решить уравнения: \( \log _{x}9+\log _{x^{2}}729=10 \)

Решение №17678: ОДЗ: \( \left\{\begin{matrix} x> 0 & & \\ x\neq \pm 1 & & \end{matrix}\right.0< x\neq 1 \) Имеем \( \log _{x}9+\frac{3}{2}\log _{x}9=10, \log _{x}9=4 \), откуда \( x^{4}=9, x=\sqrt{3}, x=-\sqrt{3} \) не подходит по ОДЗ.

Ответ: \( \sqrt{3} )\

Решить уравнения: \( 2^{x^{2}-1}-3^{x^{2}}=3^{x^{2}-1}-2^{x^{2} +2} \)

Решение №17682: Имеем \( \frac{2^{x^{2}}}{2}+4*2^{x^{2}}=\frac{3^{x^{2}}}{3}+3^{x^{2}}, \frac{9}{2}*2^{x^{2}}=\frac{4}{3}*3^{x^{2}}, \left ( \frac{2}{3} \right )^{x^{2}}=\left ( \frac{2}{3} \right )^{3} \) Тогда \( x^{2}=3 \), откуда \( x_{1}=- \sqrt{3} , x_{1}=\sqrt{3} \)

Ответ: \( -\sqrt{3};\sqrt{3} )\

Решить уравнения: \( \lg ^{2}\left ( 100x \right )+\lg ^{2}\left ( 10x \right )=14+\lg \frac{1}{x} \)

Решение №17690: ОДЗ: \( x> 0 \) Логарифмируя, имеем \( \left ( \lg 100+\lg x \right )^{2}+\left ( \lg 10+\lg x \right )^{2}=14-\lg x, 2\lg x+7\lg x-9=0 \) Решая это уравнение как квадратное относительно \( \lg x \), получаем \( \left ( \lg x \right )_{1}=-\frac{9}{2} \), или \( \left ( \lg x \right )_{2}=1 \), откуда \( x_{1}=10^{-\frac{9}{2}}, x_{2}=10 \)

Ответ: \( 10^{-\frac{9}{2}}; 10 )\

Решить уравнения: \( x^{\frac{\lg x+5}{3}}=10^{5+\lg x} \)

Решение №17691: ОДЗ: \( 0< x\neq 1 \) Логарифмируя обе части уравнения по основанию 10, имеем \( \lg x^{\frac{\lg x+5}{3}}=\lg 10^{5+\lg x}, \frac{\lg x+5}{3}\lg x=\left ( 5+\lg x \right \)lg 10, \lg ^{2}x+2\lg x-15=0 \) Решая это уравнение как квадратное относительно \( \lg x \), получаем \( \left (\lg x \right )_{1}=-5 \), или \( \left (\lg x \right )_{2}=3 \), откуда \( x_{1}=10^{-5}, x_{2}=1000 \)

Ответ: \( 10^{-5}; 10^{3} )\

Решить уравнения: \( 8^{\frac{2}{x}}-2^{\frac{3x+3}{x}}+12=0 \)

Решение №17697: ОДЗ: \( x\neq 0 \) Перепишем уравнение в виде \( 2^{\frac{6}{x}}-2^{3+\frac{3}{x}}+12=0, \left ( 2^{\frac{3}{x}} \right )^{2}-8*2^{\frac{3}{x}}+12=0 \) Решая это уравнение как квадратное относительно \( 2^{\frac{3}{x}} \), получаем \( \left (2^{\frac{3}{x}} \right )_{1}=2 \), откуда \( \left ( \frac{3}{x} \right )_{1}=1, x_{1}=3 \), или \( \left (2^{\frac{3}{x}} \right )_{2}=6 \), откуда \( \left ( \log _{2}2^{\frac{3}{x}} \right )_{2}=\log _{2}6, \left ( \frac{3}{x} \right )_{2}=\log _{2}6, x_{2}=\frac{3}{\log _{2}6}=3\log _{6}2=\log _{6}8 \)

Ответ: \( 3; \log _{6}8 )\

Решить уравнения: \( 27x^{\log _{27}x}=x^{10/3} \)

Решение №17698: ОДЗ: \( 0< x\neq 1 \) Логарифмируя обе части уравнения по основанию 3, имеем \( \log _{3}27x^{\log _{27}x}=\log _{3}x^{10/3}, 3+\frac{1}{3}\log _{2}^{3}x=\frac{10}{3}\log _{3}x, \log _{2}^{3}x-10\log _{3}x+9=0 \) Решая это уравнение как квадратное относительно \( \log _{3}x \), получаем \( \left ( \log _{3}x \right )_{1}=1 \), или \( \left ( \log _{3}x \right )_{2}=9 \), откуда \( x_{1}=3, x_{2}=3^{9} \)

Ответ: \( 3; 3^{9} )\

Решить уравнения: \( 2\log _{3}\left ( x-2 \right )+\log _{3}\left ( x-4 \right )^{2}=0 \)

Решение №17699: ОДЗ: \( \left\{\begin{matrix} x-2> 0 & & \\ x-4\neq 0 & & \end{matrix}\right.2< x\neq 4 \) Из условия \( 2\log _{3}\left ( x-2 \right )+2\log _{3}\left | x-4 \right |=0 или \( \log _{3}\left ( x-2 \right )+\log _{3}\left | x-4 \right |=0 \) Имеем: \( \left\{\begin{matrix} 2< x< 4 & & \\ \log _{3}\left ( x-2 \right )+\log _{3}\left ( 4-x \right )=0 & & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} 2< x< 4 & & \\ \log _{3}\left ( x-2 \right \)left ( 4-x \right )=0 & &\end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} 2< x< 4 & & \\ x^{2}-6x+9=0 & & \end{matrix}\right. \), откуда \( x_{1}=3 \); \left\{\begin{matrix} x> 4 & & \\ \log _{3}\left ( x-2 \right \)left ( x-2 \right )=0 & & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} x> 4 & & \\ \log _{3}\left ( x-2 \right \)left ( 4-x \right )=0 & & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} x> 4 & & \\ x^{2}-6x+7=0 & & \end{matrix}\right. \), откуда \( x_{2}=3+\sqrt{2} \)

Ответ: \( 3; 3+\sqrt{2} )\

Решить уравнения: \( \lg \left ( 5 -x \right ) +2 \lg \sqrt{ 3 -x} =1 \)

Решение №17700: ОДЗ: \( \left\{\begin{matrix} 5-x> 0 & \\ 3-x> 0 & \end{matrix}\right. x< 3 \) Имеем \( \lg \left ( 5-x \right )+\lg \left ( 3-x \right )=1 , \lg \left ( 5-x \right \)lg \left ( 3-x \right )=1 \), откуда \( \left ( 5-x \right )+\lg \left ( 3-x \right )=10 , x^{2}-8x+5=0 \) Тогда \( x_{1}= 4- \sqrt{11} , x_{2}= 4 + \sqrt{11} , x_{2}= 4+ \sqrt{11} \) не подходит по ОДЗ.

Ответ: \( 4- \sqrt{11} )\

Решить уравнения: \( 2\lg \sqrt{4-x}+\lg \left ( 6-x \right )=1 \)

Решение №17701: ОДЗ: \( \left\{\begin{matrix} 4-x> 0 & & \\ 6-x> 0 & & \end{matrix}\right.x< 4 \) Перепишем уравнение в виде \( \lg \left ( 4-x \right )+\lg \left ( 6-x \right )=1, \lg \left ( 4-x \right \)left ( 6-x \right )=1 \), откуда \( \left ( 4-x \right \)left ( 6-x \right )=10, x^{2}+10x-14=0 \) Следовательно, \( x_{1}=5-\sqrt{11}, x_{2}=5+\sqrt{11}; x_{2}=5+\sqrt{11} не подходит по ОДЗ.

Ответ: \( 5-\sqrt{11} )\

Решить уравнения: \( 10^{\frac{2}{x}}+25^{\frac{1}{x}}=4.25*50^{\frac{1}{x}} \)

Решение №17709: ОДЗ: \( x\neq 0 \) Разделив обе части уравнения на \( 25^{\frac{1}{x}} \), имеем \( 2^{\frac{2}{x}}-4.25\left ( 2^{ \frac{ 1}{ x}} \right ) + 1 = 0 \), откуда, решая уравнение как квадратное относительно \( 2^{\frac{1}{x}} \), получим \( \left (2^{\frac{1}{x}} \right )_{1}=\frac{1}{4} \), откуда \( \left ({\frac{1}{x}} \right )_{1}=-2, x_{1}=-\frac{1}{2} \), или \( \left (2^{\frac{1}{x}} \right )_{1}=4 \), откуда \( \left ({\frac{1}{x}} \right )_{2}=2, x_{2}=\frac{1}{2} \)

Ответ: \( x_{1}=-\frac{1}{2}; x_{2}=\frac{1}{2} )\

Решить уравнения: \( \log _{a}y+\log _{a}\left ( y+5 \right )+\log _{a}0.02=0 \)

Решение №17712: ОДЗ: \( \left\{\begin{matrix} y> 0, & \\ y+5> 0 & \\ 0< a\neq 1 & \end{matrix}\right.\left\{\begin{matrix} y> 0 & \\ 0< a\neq 1 & \end{matrix}\right. \) Имеем \( log_{a}\left ( y\left ( y+5 \right )*0.02 \right )=0 ,0.02y^{2}+0.1y=1 , 0.02y^{2}+0.1y-1=0 \), откуда \( y_{1}=5; y_{2}=-10 \) не подходит по ОДЗ.

Ответ: \( y=5 0< a\neq 1)\

Четыре точки \(А\), \(В\), \(С\) и \(D\) таковы, что отрезки \(AB\), \(ВС\), \(СD\) и \(DA\) равны (см. рис. ниже). Докажите, что \(AC\perp BD\).

Решение №17716: Пусть точка \(О\) — середина отрезка \(АС\). Тогда \(AC\perp BO\) и \(AC\perp OD\).

Ответ: NaN

На одной стороне угла с вершиной \(О\) отмечены точки \(А\) и \(С\), на другой точки \(В\) и \(D\), отрезки \(AD\) и \(ВС\) пересекаются в точке \(Е\) (см. рис. ниже). Докажите, что если \(АС = BD\) и \(ОА=ОВ\), то луч \(ОЕ\) является биссектрисой угла \(АОВ\).

Решение №17717: Треугольники \(OAD\) и \(ОВС\) равны по двум сторонам \((ОА = ОВ и OD = ОВ + BD =ОА + АС = ОС)\) и углу между ними. Треугольники \(ЕАС\) и \(EBD\) равны по стороне \((АС = BD)\) и прилежащим к ней углам (углы \(С\) и \(D\) являются равными углами треугольников \(ОАD\) и \(ОВС\), а углы \(А\) и \(В\) являются смежными с равными углами этих треугольников). Треугольники \(ОЕС\) и \(OED\) равны по трём сторонам (сторона \(ОЕ\) у них общая, равенство сторон \(ОС\) и \(OD\) следует непосредственно из условия, равенство сторон \(ЕС\) и \(ED\) следует из равенства треугольников \(ЕАС\) и \(EBD\)). Из равенства треугольников \(ОЕС\) и \(OED\) следует равенство углов \(СОЕ\) и \(DOE\).

Ответ: NaN

Внутри треугольника \(АВС\) отмечена точка \(О\) так, что луч \(ВО\) делит пополам углы \(АВС\) и \(АОС\) (см. рис. ниже). Докажите, что этот треугольник равнобедренный.

Решение №17718: Докажите сначала, что треугольники \(ОВА\) и \(ОВС\) равны по стороне и прилежащим к ней углам.

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Физика, Механика, Кинематика, Относительность движения,

Задача в следующих классах: 10 класс 11 класс

Сложность задачи : 2

Задача встречается в следующей книге: Турчина Н. В. и др. Физика: 3800 задач для школьников и поступающих в вузы //М.: Дрофа. – 2000. – Т. 3.

На рисунке изображены: \(I\) — график движения катера в стоячей воде, \(II\) — график движения воды в реке. Построить график движения катера в случае, когда он движется по течению реки. По графикам найти: скорость катера в стоячей воде, скорость течения реки, скорость катера вниз по реке и скорость катера вверх по реке.Ответ дать в км/ч, округлить до целых

Решение №17792: См. рисунок ниже. \(v=20\) км/ч; \(u=5\) км/ч

Ответ: 20;5