Задачи

Фильтрация

Показать фильтрацию

По классам:

По предметам:

По подготовке:

По классам:

По авторам:

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, касательная к окружности,

Задача в следующих классах: 7 класс

Сложность задачи : 2

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

\(CH\) — высота прямоугольного треугольника \(ABC,\) проведенная из вершины прямого угла. Докажите, что сумма радиусов окружностей, вписанных в треугольники \(ACH, BCH\) и \(ABC\), равна \(CH\).

Пока решения данной задачи,увы,нет...

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, касательная к окружности,

Задача в следующих классах: 7 класс

Сложность задачи : 2

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

В треугольник \(ABC\) вписана окружность, касающаяся стороны \(AB\) в точке \(M\). Пусть \(AM = x, BC = a\), полупериметр треугольника равен \(p\). Докажите, что \( x=p-a\).

Решение №17330: Обозначим точки касания вписанной окружности со сторонами \(BC\) и \(AC\) через \(K\) и \(N\) соответственно (рис. 161). Пусть \(AC = b\) и \(AB = c\). Тогда \(BK = BM = AB − AM = c − x, CK = CN = AC − AN = b − x, BC = BK + CK = c − x + b − x = b + c − 2x\). Следовательно, \( x=\frac{1}{2}\left ( b+c-a \right )=\frac{1}{2}\left ( b+c+a \right )-a=p-a \) .

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, касательная к окружности,

Задача в следующих классах: 7 класс

Сложность задачи : 2

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

\(CD\) — медиана треугольника . Окружности, вписанные в треугольники \(ACD\) и \(BCD\), касаются отрезка \(CD\) в точках \(M\) и \(N\). Найдите \(MN\), если \(AC − BC = 2\).

Решение №17331: Поскольку \(AD = DB\), а \(CM = 1/2(AC + CD - AD)\) и \(CN = 1/2(BC + CD - BD)\), то \( MN = | CM - CN| = | 1/2(AC + CD - AD) - 1/2(BC + CD - BD)| = 1/2| AC - BC| = 1/2 . 2 = 1\)

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, касательная к окружности,

Задача в следующих классах: 7 класс

Сложность задачи : 2

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

На основании \(AB\) равнобедренного треугольника \(ABC\) взята точка \(D\), причем \(BD − AD = 4\). Найдите расстояние между точками, в которых окружности, вписанные в треугольники \(ACD\) и \(BCD\), касаются отрезка \(CD\).

Решение №17332: Пусть окружности, вписанные в треугольники \(ACD\) и \(BCD\), касаются отрезка \(CD\) в точках \(M\) и \(N\) соответственно. Поскольку \(AC = BC\), а \( CM=\frac{AC+CD-AD}{2}, CN=\frac{BC+CD-BD}{2}, \), ТО \( MN=\left | CM-CN \right |=\left | \frac{AC+CD-AD}{2}- \frac{BC+CD-BD}{2} \right |= \frac{\left | BD-AD \right |}{2}=\frac{4}{2}=2 \)

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, касательная к окружности,

Задача в следующих классах: 7 класс

Сложность задачи : 2

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Окружность касается стороны \(BC\) треугольника \(ABC\) в точке \(M\), а продолжений сторон \(AB\) и \(AC\) — в точках \(N\) и \(P\) соответственно. Вписанная в этот треугольник окружность касается стороны \(BC\) в точке \(K\), а стороны \(AB\) — в точке \(L\). Докажите, что: а) отрезок \(AN\) равен полупериметру треугольника \(ABC\); б) \(BK = CM\); в) \(NL = BC\).

Решение №17333: а) Пусть \(p\) — полупериметр треугольника \(ABC\) (см. рис. ниже). Тогда \(AN + AP = AB + BN + AC + CP = AB + BM + AC + CM = = AB + AC + (BM + CM) = AB + AC + BC = 2p\) и \(AN = AP\) , поэтому \(AN = p\). б) Так как \(BK = p − AC\) и \(CM = CP = AP−AC = p−AC\), то \(BK = CM\). в) \(NL = AN − AL = p − (p − BC) = BC\).

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, касательная к окружности,

Задача в следующих классах: 7 класс

Сложность задачи : 2

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

В треугольник со сторонами 6, 10 и 12 вписана окружность. К окружности проведена касательная так, что она пересекает две большие стороны. Найдите периметр отсеченного треугольника.

Решение №17334: Пусть \(K\) — точка касания окружности, вписанной в треугольник \(ABC\) (см. рис. ниже), со стороной \(AB (AB = 10, AC = 12, BC = 6)\). Если \(p\) — полупериметр треугольника, то \(AK = p − BC = 14 − 6 = 8\), а \(AK\) равно полупериметру отсеченного треугольника.

Ответ: 16

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Задачи на построение с помощью циркуля и линейки,

Задача в следующих классах: 7 класс

Сложность задачи : 2

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Через данную точку проведите прямую, отсекающую от данного угла треугольник заданного периметра.

Решение №17335: Пусть \(M\) — точка внутри данного угла (см. рис. ниже,а), \(A\) — вершина угла, \(2p\) — данный периметр. Отложим на сторонах данного угла точки \(B\) и \(C\) так, что \(AB = AC = p\). Впишем в угол окружность, касающуюся его сторон в точках \(B\) и \(C\), и проведем через точку \(M\) касательные к этой окружности (если это возможно). Если точка \(M\) расположена вне угла (см. рис. ниже,б), то искомая прямая — это касательная к построенной окружности, проходящая через точку \(M\) и отсекающая от данного угла треугольник, для которого построенная окружность — вневписанная.

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, касательная к окружности,

Задача в следующих классах: 7 класс

Сложность задачи : 2

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Прямая, проходящая через центры двух окружностей, называется их линией центров. Докажите, что общие внешние (внутренние) касательные к двум окружностям пересекаются на линии центров этих окружностей.

Решение №17336: Общие внешние (внутренние) касательные к двум окружностям симметричны друг другу относительно линии центров.

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, касательная к окружности,

Задача в следующих классах: 7 класс

Сложность задачи : 2

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Говорят, что две окружности касаются, если они имеют единственную общую точку (точка касания окружностей). Докажите, что линия центров двух касающихся окружностей проходит через точку их касания.

Решение №17337: Предположим, что точка касания не лежит на линии центров. Тогда точка, симметричная точке касания относительно линии центров, также принадлежит обеим окружностям, что противоречит условию.

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, касательная к окружности,

Задача в следующих классах: 7 класс

Сложность задачи : 2

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Докажите, что две окружности касаются тогда и только тогда, когда они касаются некоторой прямой в одной и той же точке.

Решение №17338: Пусть \(M\) — единственная общая точка окружностей с центрами \(O_{1}\) и \(O_{2}\) (рис. 166). Точка \(M\) лежит на прямой \(O_{1}O_{2}\). Прямая, проходящая через точку \(M\) перпендикулярно \(O_{1}O_{2}\), является касательной к каждой из окружностей. Пусть теперь окружности с центрами \(O_{1}\) и \(O_{2}\) касаются некоторой прямой \(l\) в точке \(M\). Тогда радиусы \(O_{1}M\) и \(O_{2}M\) перпендикулярны \(l\), значит, точка \(M\) лежит на прямой \(O_{1}O_{2}\). Предположим, что окружности имеют еще одну общую точку \(K\), отличную от \(M\). Тогда точка, симметричная точке \(K\) относительно прямой \(O_{1}O_{2}\), также принадлежит обеим окружностям, что невозможно, так как две различные окружности не могут иметь три общие точки.

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, касательная к окружности,

Задача в следующих классах: 7 класс

Сложность задачи : 2

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Две окружности касаются внешним (внутренним) образом. Докажите, что сумма (разность) их радиусов равна расстоянию между центрами. Верно ли обратное?

Решение №17339: Пусть сумма радиусов \(r\) и \(R\) двух окружностей равна расстоянию между их центрами \(O_{1}\) и \(O_{2}\) (см. рис. ниже). Тогда точка \(M\) отрезка \(O_{1}O_{2}\), удаленная от точки \(O_{1}\) на расстояние \(r\), удалена на расстояние \(R\) от точки \(O_{2}\), значит, \(M\) — общая точка окружностей. Если \(K\) — еще одна общая точка этих окружностей, то \(O_{1}O_{2}< O_{1}K + O_{2}K = r + R\), что невозможно. Остальное аналогично.

Ответ: Верно.

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, касательная к окружности,

Задача в следующих классах: 7 класс

Сложность задачи : 2

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Окружность с центром \(O\) касается в точке \(A\) внутренним образом большей окружности. Из точки \(B\) большей окружности, диаметрально противоположной точке \(A\), проведена хорда \(BC\) большей окружности, касающаяся меньшей окружности в точке \(M\). Докажите, что \( OM \parallel AC \).

Решение №17340: Поскольку касательная \(BM\) к меньшей окружности перпендикулярна радиусу, проведённому в точку касания, то \(\angle OMB = 90^{\circ}\), а т.к. точка \(C\) лежит на окружности с диаметром \(AB\), то \(\angle ACB = 90^{\circ}\). Следовательно, \( OM \parallel AC\).

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, касательная к окружности,

Задача в следующих классах: 7 класс

Сложность задачи : 2

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Окружности с центрами \(O_{1}\) и \(O_{2}\) касаются внешним образом в точке \(K\). Некоторая прямая касается этих окружностей в различных точках \(A\) и \(B\) и пересекает их общую касательную, проходящую через точку \(K\), в точке \(M\). Докажите, что \( \angle O_{1} MO_{2}= \angle AKB = 90 ^{\circ} \)

Решение №17341: \(O_{1}MO_{2}\) — угол между биссектрисами смежных углов, поэтому \(\angle O_{1}MO_{2} = 90^{\circ}\) (рис. 167). Поскольку \(MA = MK = MB\), точка \(K\) лежит на окружности с диаметром \(AB\), следовательно, \( \angle AKB = 90^{\circ}\).

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, касательная к окружности,

Задача в следующих классах: 7 класс

Сложность задачи : 2

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

В острый угол, равный \( 60^{\circ} \), вписаны две окружности, касающиеся друг друга внешним образом. Радиус меньшей окружности равен \(r\). Найдите радиус большей окружности.

Решение №17342: Пусть \(R\) — радиус большей окружности (см. рис. ниже). Опустим перпендикуляр из центра меньшей окружности на радиус большей окружности, проведенный в точку касания с одной из сторон данного угла. Получим прямоугольный треугольник с гипотенузой \(R + r\), катетом \(R − r\) и острым углом, равным \(30^{\circ}\), противолежащим этому катету. Тогда\(R + r = 2(R − r)\). Отсюда находим, что \(R = 3r\).

Ответ: 3r

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, касательная к окружности,

Задача в следующих классах: 7 класс

Сложность задачи : 2

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Две окружности касаются внутренним образом. Известно, что два радиуса большей окружности, угол между которыми равен \( 60^{\circ}\), касаются меньшей окружности. Найдите отношение радиусов окружностей.

Решение №17343: Пусть окружности с центрами \(O\)‍ и \(O_{1}‍\) и радиусами \(R\)‍ и \(r‍ (R > r)\)‍ соответственно касаются внутренним образом в точке\( A\),‍ а радиусы \(OB\)‍ и \(OC‍\) большей окружности касаются меньшей соответственно в точках \(M\)‍ и \(N\),‍ причём \(\angle BOC = 60‍^{\circ}\)∘.‍ Поскольку центр окружности, вписанной в угол, лежит на биссектрисе этого угла, \(\angle AOB = 30^{\circ}\),‍ а так как линия центров двух касающихся окружностей проходит через точку их касания, то \(OO‍_{1} = OA − O‍_{1}A = R − r\).‍ Из прямоугольного треугольника OO‍_{1}M‍ находим, что \(OO‍_{1}= 2O‍_{1}M\), или \(R − r = 2r\),‍ откуда ‍\( \frac{r}{R}=\frac{1}{3} \) ‍

Ответ: \( \frac{1}{3} \)

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, касательная к окружности,

Задача в следующих классах: 7 класс

Сложность задачи : 2

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Две окружности касаются в точке \(A\). Прямая, проходящая через точку \(A\), пересекает эти окружности вторично в точках \(B\) и \(C\) соответственно. Докажите, что касательные, проведенные к этим окружностям в точках \(B\) и \(C\), параллельны.

Решение №17344: Пусть \(O_{1}\) и \(O_{1}\) — центры окружностей (см. рис. ниже). Тогда точки \(O_{1} , O_{2}\) и\( A\) лежат на одной прямой. Треугольники \(O_{1} AB\) и \(O_{2} AC\) — равнобедренные, поэтому \(\angle ABO_{1} = \angle BAO_{1} = \angle CAO_{2} = \angle ACO_{2}\), значит, прямая \(O_{1}B\) параллельна прямой \(CO_{2}\). Следовательно, параллельны и перпендикулярные к ним касательные.

Ответ: NaN

Верно ли утверждение предыдущей задачи для четырехугольника, в который можно вписать окружность?

Пока решения данной задачи,увы,нет...

Ответ: Нет.

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, касательная к окружности,

Задача в следующих классах: 7 класс

Сложность задачи : 2

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

В четырехугольнике \(MNPQ\) расположены две непересекающиеся окружности так, что одна из них касается сторон \(MN, NP\) и \(PQ\), а другая — сторон \(MN, MQ\) и \(PQ\). Точки \(B\) и \(A\) лежат соответственно на сторонах \(MN\) и \(PQ\), причем отрезок \(AB\) касается обеих окружностей. Найдите сторону \(MQ\), если \(NP = b\) и периметр четырехугольника \(BAQM\) больше периметра четырехугольника \(ABNP\) на \( 2p \).

Решение №17346: Поскольку в четырехугольники \(ABMQ\) и \(ABNP\) вписаны окружности (см. рис. ниже), \( MQ+AB=\frac{1}{2}P_{1} \) и \( AB+NP=\frac{1}{2}P_{2} \) \( P_{1} \) и \( P_{2} \) — периметры этих четырехугольников). Поэтому \( MQ-NP=\frac{1}{2}\left ( P_{1}-P_{2} \right )=p \) Отсюда находим, что \( MQ = NP + p = b + p\).

Ответ: b+p

Биссектриса угла при основании \(BC\) равнобедренного треугольника \(ABC\) пересекает боковую сторону \(AC\) в точке \(K\). Докажите, что \(BK < 2CK\).

Решение №17372: Через точку \(K\) проведем прямую, параллельную основанию \(BC\) (см. рис. ниже). Пусть \(M\) — ее точка пересечения с боковой стороной \(AB\). Тогда \( \angle BKM = \angle CBK = \angle ABK\), значит, треугольник \( BMK\) равнобедренный, \( BM = MK = KC\). Следовательно, \(2CK = BM + MK > BK\).

Ответ: NaN

Две окружности радиусов \(r\) и \(R (r < R) \) пересекаются. Докажите, что расстояние между их центрами: а) меньше, чем \( r + R\); б) больше, чем \(R − r\).

Решение №17373: Пусть \(O_{1}\) и \(O_{2}\) — центры окружностей радиусов \(r\) и \(R\) соответственно (см. рис. ниже), A — одна из двух точек их пересечения. Для треугольника \( O_{1}AO_{2} \) верны неравенства \( O_{1}O_{2} < O_{1}A + O_{2}A\) и \(AO_{2} < O_{1}A + O_{1}O_{2}\), или \( O_{1}O_{2} < r + R и O_{1}O_{2} > AO_{2} − AO_{1} = R − r\).

Ответ: NaN

Расстояние между центрами окружностей радиусов 2 и 3 равно 8. Найдите наименьшее и наибольшее из расстояний между точками, одна из которых лежит на первой окружности, а другая — на второй.

Решение №17374: Докажем, что кратчайшее расстояние между точками двух окружностей, лежащих одна вне другой, есть отрезок линии центров, заключенный между окружностями. Пусть \(O_{1}\) и \(O_{2}\) — центры окружностей, а линия центров пересекает окружности в точках \(A\) и \(B\), причем и \(A\), и \(B\) лежат между \(O_{1}\) и \(O_{2}\) (см. рис. ниже). Тогда, если \(X\) и \(Y\) — другие точки этих окружностей, то \(XO_{1} + XY + YO_{2} > O_{1}O_{2} = AO_{1} + AB + BO_{2}\). Следовательно, \(XY > AB\). Пусть \(AM\) и \(BN\) — диаметры окружностей, а \(X\) и \(Y\) — точки окружностей, отличные от \(M\) и \(N\). Тогда \( XY < XO_{1} + O_{1}O_{2} + Y O_{2} = MO_{1} + O_{1}O_{2} + NO_{2} = MN\). В нашей задаче \(AB = 3\) и \( MN = 2 + 8 + 3 = 13\).

Ответ: 3 и 13.

Докажите, что каждая сторона треугольника видна из центра вписанной окружности под тупым углом.

Решение №17375: Если \( O\) — точка пересечения биссектрис треугольника \(ABC\), то \( \angle BOC=90^{\circ}+\frac{1}{2}\angle A \)

Ответ: NaN

Рассмотрим равнобедренные треугольники с одними и теми же боковыми сторонами. Докажите, что чем больше угол при вершине, тем меньше высота, опущенная на основание.

Решение №17376: Пусть \( ABC\) и \( A_{1}B_{1}C_{1}\) — равнобедренные треугольники с основаниями \(BC\) и \(B_{1}C_{1}\) (рис. 194), причем \(AB = AC = A_{1}B_{1} = A_{1}C_{1}\) и \( \angle A > \angle A_{1}, а \(AD\) и \(A_{1}D_{1}\) — их высоты. На продолжениях \(AD\) и \(A_{1}D_{1}\) за точки \(D\) и \(D_{1}\) отложим отрезки \(DM\) и \(D_{1}M_{1}\), соответственно равные \(AD\) и \(A_{1}D_{1}\). Тогда в треугольниках \(ACM\) и \(A_{1}C_{1}M_{1}\) известно, что \(AC = A_{1}C_{1}, CM = C_{1}M_{1}\) и \(\angle ACM < \angle A_{1}C_{1}M_{1}\). Значит, \(AM < A_{1}M_{1}\). Следовательно, \(AD < A_{1}D_{1}\).

Ответ: NaN

Рассмотрим равнобедренные треугольники с одними и теми же боковыми сторонами. Докажите, что чем больше основание, тем меньше проведенная к нему высота.

Решение №17377: Пусть \(a\) – боковая сторона, \(2b\) – основание, \(h\) – высота, опущенная на основание. Тогда \(a^{2} = h^{2} + b^{2} \), откуда все и следует.

Ответ: NaN

Докажите что из двух неравных хорд окружности большая удалена от центра на меньшее расстояние. Верно ли обратное?

Решение №17378: Воспользуемся следующей леммой (рис. 1). Если стороны \(XY\)‍ и \(XZ\)‍ треугольника \(XYZ\)‍ соответственно равны сторонам \(X‍_{1}Y‍_{1}\)‍ и \(X‍_{1}Z‍_{1}\)‍ треугольника \( X‍_{1}Y‍_{1}Z_{1}\),‍ а \(YZ > Y‍_{1}Z‍_{1}\),‍ то \(\angle YXZ > \angle Y‍_{1}X_{1}‍Z‍_{1}\).‍ Обратно, если \(XY = X‍_{1}Y‍_{1}\)‍ и \(XZ = X‍_{1}Z‍_{1}\),‍ а \( YXZ > \angle Y‍_{1}X‍_{1}Z‍_{1}\),‍ то \(YZ > Y‍_{1}Z‍_{1}\)‍. Пусть \(AB\)‍ и \(CD\) —‍ отличные от диаметра хорды окружности с центром \(O\)‍ (рис. 2), причём \(AB > CD,‍ M\)‍ и \(N\)‍ соответственно — проекции центра окружности на эти хорды. Тогда \(OM\)‍ и \(ON\) —‍ высоты равнобедренных треугольников \(AOB\)‍ и \(COD\)‍ с равными боковыми сторонами \(OA = OB = OC = OD\)‍ и неравными основаниями \(AB > AC\).‍ Докажем, что высота \(OM\)‍ треугольника \(AOB\)‍ с большим основанием \(AB\),‍ меньше высоты \(ON\)‍ треугольника \(COD\).‍ Действительно, по лемме \( \angle AOB > \angle COD\),‍ поэтому \( \angle OAB < \angle OCD\).‍ На продолжении отрезка \(OM‍\) за точку \(M\)‍ отложим отрезок \(MP\),‍ равный \(OM\),‍ а на продолжении отрезка \(ON\)‍ за точку \(N\) —‍ отрезок \(NQ\),‍ равный \(ON\).‍ Рассмотрим равнобедренные треугольники \(OAP‍\) и \(OCQ\).‍ Известно, что \(AP = AO = CO = CQ\)‍ и \( \angle OAP < \angle OCQ\),‍ поэтому \(OP < OQ\).‍ Следовательно, \(OM =\frac{1}{2}OP< ‍ ‍\frac{1}{2}CQ = ON\).‍ Что и требовалось доказать. Аналогично можно доказать и обратное, т. е. если расстояние от центра окружности до хорды \(AB\)‍ меньше расстояния от центра окружности до хорды \(CD\),‍ то \(AB > CD\).

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Задачи на построение с помощью циркуля и линейки,

Задача в следующих классах: 7 класс

Сложность задачи : 2

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Через данную точку внутри круга проведите наименьшую хорду.

Решение №17379: Искомая хорда перпендикулярна радиусу, проходящему через данную точку.

Ответ: NaN

Докажите, что медиана треугольника \(ABC\), проведенная из вершины \(A\), меньше полусуммы сторон \(AB\) и \(AC\), но больше их полуразности.

Решение №17380: Отложим на продолжении медианы \(AM\) за точку \(M\) отрезок \(MK\), равный \(AM\) (см. рис. ниже). Тогда \(CK = AB\). Применяя неравенство треугольника к треугольнику \(ABK\), получим \(2AM = AK < AB + BK = AB + AC\) и \(2AM = AK > AB − BK = AB − AC\). Отсюда следует, что \( \frac{1}{2}\left ( AB-AC \right )< AM < \frac{1}{2}\left ( AB+AC \right ) \) .

Ответ: NaN

Внутри треугольника \(ABC\) взята точка \(M\). Докажите, что угол \(BMC\) больше угла \(BAC\).

Решение №17381: Продолжим \(AM\) до пересечения со стороной \(BC\) в точке \(K\) (см. рис. ниже). Тогда \( \angle BMK = \angle BAM + \angle ABM > \angle BAM\) и \( \angle CMK = \angle CAM + \angle ACM > \angle CAM\). Следовательно, \( \angle BMC = \angle BMK + \angle CMK > \angle BAM + \angle CAM = \angle BAC\).

Ответ: NaN

Пусть \(CK\) — биссектриса треугольника \(ABC\) и \( AC > BC\). Докажите, что угол \( AKC\) — тупой.

Решение №17382: Поскольку угол \(B\) треугольника \(BCK\) (см. рис. ниже) больше угла \(A\) треугольника \(ACK\) (против большей стороны \(AC\) треугольника \(ABC\) лежит больший угол), а углы \(BCK\) и \(ACK\) этих треугольников равны, то \(\angle BKC < \angle AKC\), а так как это смежные углы, то угол \(AKC\) тупой.

Ответ: NaN

Пусть \(BD\) — биссектриса треугольника \(ABC\). Докажите, что \(AB > AD\) и \(CB > CD\).

Решение №17383: Угол \(ADB\) — внешний угол треугольника \(BDC\) (см. рис. ниже), поэтому \angle ADB > \angle CBD = \angle ABD\) , значит, в треугольнике \( ABD\) сторона \(AB\) больше стороны \(AD\). Аналогично, \(CB > CD\).

Ответ: NaN