Задачи

Фильтрация

Показать фильтрацию

По классам:

По предметам:

По подготовке:

По классам:

По авторам:

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, касательная к окружности,

Задача в следующих классах: 7 класс

Сложность задачи : 2

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Прямая касается окружности с центром \(O\) в точке \(A\). Точка \(C\) на этой прямой и точка \(D\) на окружности расположены по одну сторону от прямой \(OA\). Докажите, что угол \(CAD\) вдвое меньше угла \(AOD\).

Решение №17320: Треугольник \(AOD\) равнобедренный.

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Задачи на построение с помощью циркуля и линейки,

Задача в следующих классах: 7 класс

Сложность задачи : 2

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Проведите к данной окружности касательную, от которой данная прямая отсекала бы данный отрезок, т.е. чтобы один конец отрезка лежал на прямой, а второй — на окружности.

Решение №17321: Искомая точка на прямой удалена от центра окружности на расстояние, равное гипотенузе прямоугольного треугольника, один катет которого равен радиусу окружности, а второй — данному отрезку.

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, касательная к окружности,

Задача в следующих классах: 7 класс

Сложность задачи : 2

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Докажите, что если окружность касается всех сторон четырехугольника, то суммы противоположных сторон четырехугольника равны между собой.

Решение №17322: Отрезки касательных, проведенных из одной точки к окружности, равны между собой. Точки касания делят каждую сторону четырехугольника на две части. Обозначим последовательно их длины, используя одну букву для равных отрезков, начиная от какой-нибудь из вершин: \(a, b, b, c, c, d, d, a\) (см. рис. ниже). Ясно, что суммы противоположных сторон состоят из одинаковых слагаемых.

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, касательная к окружности,

Задача в следующих классах: 7 класс

Сложность задачи : 2

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Окружность высекает на сторонах четырехугольника равные хорды. Докажите, что в этот четырехугольник можно вписать окружность.

Решение №17323: Опустите перпендикуляры из центра окружности на указанные хорды.

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, касательная к окружности,

Задача в следующих классах: 7 класс

Сложность задачи : 2

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Окружность касается стороны \(BC\) треугольника \(ABC\) в точке \(M\) и продолжений двух других сторон. Докажите, что прямая \(AM\) делит треугольник на два треугольника с равными периметрами.

Решение №17324: Примените теорему о равенстве отрезков касательных, проведенных к окружности из одной точки.

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, касательная к окружности,

Задача в следующих классах: 7 класс

Сложность задачи : 2

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

В равнобедренный треугольник с основанием, равным \(a\), вписана окружность и к ней проведены три касательные так, что они отсекают от данного треугольника три маленьких треугольника, сумма периметров которых равна \(b\). Найдите боковую сторону данного треугольника.

Решение №17325: Сумма периметров отсеченных треугольников равна периметру данного треугольника (см. рис. ниже). Поэтому сумма боковых сторон равна \(b − a\). Тогда каждая боковая сторона равна \( \frac{1}{2}\left ( b-a \right ) \).

Ответ: \( \frac{1}{2}\left ( b-a \right ) \0

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, касательная к окружности,

Задача в следующих классах: 7 класс

Сложность задачи : 2

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Окружность, вписанная в треугольник \(ABC\), касается его сторон \(AB, BC\) и \(AC\) соответственно в точках \(K, M\) и \(N\). Найдите угол \(KMN\), если \(\angle A = 70^{\circ}\).

Решение №17326: Обозначим углы треугольника при вершинах \(A, B\) и \(C\) соответственно \( \alpha ,\beta ,\gamma \). Поскольку \(BM = BK\) и \(CM = CN\), то треугольники \(MBK\) и \(MCN\) – равнобедренные. Поэтому \(\angle BMK=90^{\circ}-\frac{\beta }{2}, \angle CMN=90^{\circ}-\frac{\gamma }{2}. \) Следовательно, \( \angle KMN=360^{\circ}-\angle BMK-MCN=180^{\circ}-\left ( 90^{\circ}-\frac{\beta }{2} \right )-\left ( 90-\frac{\gamma }{2}^{\circ} \right )=\frac{1}{2}\left ( \beta +\gamma \right )=90^{\circ}-\frac{\alpha }{2}=55^{\circ} \).

Ответ: 55

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, касательная к окружности,

Задача в следующих классах: 7 класс

Сложность задачи : 2

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Окружность с центром \(O\), вписанная в треугольник \(ABC\), касается сторон \(AB, BC\) и \(AC\) соответственно в точках \(K, L\) и \(M\). Известно, что \(\angle KLM =\alpha \) . Найдите \(\angleBOC\).

Пока решения данной задачи,увы,нет...

Ответ: \( 180^{\circ}-\alpha \)

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, касательная к окружности,

Задача в следующих классах: 7 класс

Сложность задачи : 2

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Пусть \(r\) — радиус окружности, вписанной в прямоугольный треугольник с катетами \(a\) и \(b\) и гипотенузой \(c\). Докажите, что \( r=\frac{1}{2} \left ( a+b-c \right ) \) .

Решение №17328: Обозначим вершины треугольника, противолежащие сторонам \( a, b, c \), через \( A, B, C\) соответственно, а точки касания — через \( A_{1}, B_{1}, C_{1}\) (см. рис. ниже). Если \( O\) — центр данной окружности, то \( OA_{1}CB_{1}\) — квадрат. Поэтому \( CA_{1} = r, BC_{1} = BA_{1} = a − r, AC_{1} = AB_{1} = b − r, c = AB = AC_{1} + C_{1}B = a + b − 2r\). Следовательно,\( \frac{1}{2}\left ( a+b-c \right ) \) .

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, касательная к окружности,

Задача в следующих классах: 7 класс

Сложность задачи : 2

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

\(CH\) — высота прямоугольного треугольника \(ABC,\) проведенная из вершины прямого угла. Докажите, что сумма радиусов окружностей, вписанных в треугольники \(ACH, BCH\) и \(ABC\), равна \(CH\).

Пока решения данной задачи,увы,нет...

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, касательная к окружности,

Задача в следующих классах: 7 класс

Сложность задачи : 2

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

В треугольник \(ABC\) вписана окружность, касающаяся стороны \(AB\) в точке \(M\). Пусть \(AM = x, BC = a\), полупериметр треугольника равен \(p\). Докажите, что \( x=p-a\).

Решение №17330: Обозначим точки касания вписанной окружности со сторонами \(BC\) и \(AC\) через \(K\) и \(N\) соответственно (рис. 161). Пусть \(AC = b\) и \(AB = c\). Тогда \(BK = BM = AB − AM = c − x, CK = CN = AC − AN = b − x, BC = BK + CK = c − x + b − x = b + c − 2x\). Следовательно, \( x=\frac{1}{2}\left ( b+c-a \right )=\frac{1}{2}\left ( b+c+a \right )-a=p-a \) .

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, касательная к окружности,

Задача в следующих классах: 7 класс

Сложность задачи : 2

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

\(CD\) — медиана треугольника . Окружности, вписанные в треугольники \(ACD\) и \(BCD\), касаются отрезка \(CD\) в точках \(M\) и \(N\). Найдите \(MN\), если \(AC − BC = 2\).

Решение №17331: Поскольку \(AD = DB\), а \(CM = 1/2(AC + CD - AD)\) и \(CN = 1/2(BC + CD - BD)\), то \( MN = | CM - CN| = | 1/2(AC + CD - AD) - 1/2(BC + CD - BD)| = 1/2| AC - BC| = 1/2 . 2 = 1\)

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, касательная к окружности,

Задача в следующих классах: 7 класс

Сложность задачи : 2

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

На основании \(AB\) равнобедренного треугольника \(ABC\) взята точка \(D\), причем \(BD − AD = 4\). Найдите расстояние между точками, в которых окружности, вписанные в треугольники \(ACD\) и \(BCD\), касаются отрезка \(CD\).

Решение №17332: Пусть окружности, вписанные в треугольники \(ACD\) и \(BCD\), касаются отрезка \(CD\) в точках \(M\) и \(N\) соответственно. Поскольку \(AC = BC\), а \( CM=\frac{AC+CD-AD}{2}, CN=\frac{BC+CD-BD}{2}, \), ТО \( MN=\left | CM-CN \right |=\left | \frac{AC+CD-AD}{2}- \frac{BC+CD-BD}{2} \right |= \frac{\left | BD-AD \right |}{2}=\frac{4}{2}=2 \)

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, касательная к окружности,

Задача в следующих классах: 7 класс

Сложность задачи : 2

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Окружность касается стороны \(BC\) треугольника \(ABC\) в точке \(M\), а продолжений сторон \(AB\) и \(AC\) — в точках \(N\) и \(P\) соответственно. Вписанная в этот треугольник окружность касается стороны \(BC\) в точке \(K\), а стороны \(AB\) — в точке \(L\). Докажите, что: а) отрезок \(AN\) равен полупериметру треугольника \(ABC\); б) \(BK = CM\); в) \(NL = BC\).

Решение №17333: а) Пусть \(p\) — полупериметр треугольника \(ABC\) (см. рис. ниже). Тогда \(AN + AP = AB + BN + AC + CP = AB + BM + AC + CM = = AB + AC + (BM + CM) = AB + AC + BC = 2p\) и \(AN = AP\) , поэтому \(AN = p\). б) Так как \(BK = p − AC\) и \(CM = CP = AP−AC = p−AC\), то \(BK = CM\). в) \(NL = AN − AL = p − (p − BC) = BC\).

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, касательная к окружности,

Задача в следующих классах: 7 класс

Сложность задачи : 2

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

В треугольник со сторонами 6, 10 и 12 вписана окружность. К окружности проведена касательная так, что она пересекает две большие стороны. Найдите периметр отсеченного треугольника.

Решение №17334: Пусть \(K\) — точка касания окружности, вписанной в треугольник \(ABC\) (см. рис. ниже), со стороной \(AB (AB = 10, AC = 12, BC = 6)\). Если \(p\) — полупериметр треугольника, то \(AK = p − BC = 14 − 6 = 8\), а \(AK\) равно полупериметру отсеченного треугольника.

Ответ: 16

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Задачи на построение с помощью циркуля и линейки,

Задача в следующих классах: 7 класс

Сложность задачи : 2

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Через данную точку проведите прямую, отсекающую от данного угла треугольник заданного периметра.

Решение №17335: Пусть \(M\) — точка внутри данного угла (см. рис. ниже,а), \(A\) — вершина угла, \(2p\) — данный периметр. Отложим на сторонах данного угла точки \(B\) и \(C\) так, что \(AB = AC = p\). Впишем в угол окружность, касающуюся его сторон в точках \(B\) и \(C\), и проведем через точку \(M\) касательные к этой окружности (если это возможно). Если точка \(M\) расположена вне угла (см. рис. ниже,б), то искомая прямая — это касательная к построенной окружности, проходящая через точку \(M\) и отсекающая от данного угла треугольник, для которого построенная окружность — вневписанная.

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, касательная к окружности,

Задача в следующих классах: 7 класс

Сложность задачи : 2

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Прямая, проходящая через центры двух окружностей, называется их линией центров. Докажите, что общие внешние (внутренние) касательные к двум окружностям пересекаются на линии центров этих окружностей.

Решение №17336: Общие внешние (внутренние) касательные к двум окружностям симметричны друг другу относительно линии центров.

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, касательная к окружности,

Задача в следующих классах: 7 класс

Сложность задачи : 2

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Говорят, что две окружности касаются, если они имеют единственную общую точку (точка касания окружностей). Докажите, что линия центров двух касающихся окружностей проходит через точку их касания.

Решение №17337: Предположим, что точка касания не лежит на линии центров. Тогда точка, симметричная точке касания относительно линии центров, также принадлежит обеим окружностям, что противоречит условию.

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, касательная к окружности,

Задача в следующих классах: 7 класс

Сложность задачи : 2

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Докажите, что две окружности касаются тогда и только тогда, когда они касаются некоторой прямой в одной и той же точке.

Решение №17338: Пусть \(M\) — единственная общая точка окружностей с центрами \(O_{1}\) и \(O_{2}\) (рис. 166). Точка \(M\) лежит на прямой \(O_{1}O_{2}\). Прямая, проходящая через точку \(M\) перпендикулярно \(O_{1}O_{2}\), является касательной к каждой из окружностей. Пусть теперь окружности с центрами \(O_{1}\) и \(O_{2}\) касаются некоторой прямой \(l\) в точке \(M\). Тогда радиусы \(O_{1}M\) и \(O_{2}M\) перпендикулярны \(l\), значит, точка \(M\) лежит на прямой \(O_{1}O_{2}\). Предположим, что окружности имеют еще одну общую точку \(K\), отличную от \(M\). Тогда точка, симметричная точке \(K\) относительно прямой \(O_{1}O_{2}\), также принадлежит обеим окружностям, что невозможно, так как две различные окружности не могут иметь три общие точки.

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, касательная к окружности,

Задача в следующих классах: 7 класс

Сложность задачи : 2

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Две окружности касаются внешним (внутренним) образом. Докажите, что сумма (разность) их радиусов равна расстоянию между центрами. Верно ли обратное?

Решение №17339: Пусть сумма радиусов \(r\) и \(R\) двух окружностей равна расстоянию между их центрами \(O_{1}\) и \(O_{2}\) (см. рис. ниже). Тогда точка \(M\) отрезка \(O_{1}O_{2}\), удаленная от точки \(O_{1}\) на расстояние \(r\), удалена на расстояние \(R\) от точки \(O_{2}\), значит, \(M\) — общая точка окружностей. Если \(K\) — еще одна общая точка этих окружностей, то \(O_{1}O_{2}< O_{1}K + O_{2}K = r + R\), что невозможно. Остальное аналогично.

Ответ: Верно.

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, касательная к окружности,

Задача в следующих классах: 7 класс

Сложность задачи : 2

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Окружность с центром \(O\) касается в точке \(A\) внутренним образом большей окружности. Из точки \(B\) большей окружности, диаметрально противоположной точке \(A\), проведена хорда \(BC\) большей окружности, касающаяся меньшей окружности в точке \(M\). Докажите, что \( OM \parallel AC \).

Решение №17340: Поскольку касательная \(BM\) к меньшей окружности перпендикулярна радиусу, проведённому в точку касания, то \(\angle OMB = 90^{\circ}\), а т.к. точка \(C\) лежит на окружности с диаметром \(AB\), то \(\angle ACB = 90^{\circ}\). Следовательно, \( OM \parallel AC\).

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, касательная к окружности,

Задача в следующих классах: 7 класс

Сложность задачи : 2

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Окружности с центрами \(O_{1}\) и \(O_{2}\) касаются внешним образом в точке \(K\). Некоторая прямая касается этих окружностей в различных точках \(A\) и \(B\) и пересекает их общую касательную, проходящую через точку \(K\), в точке \(M\). Докажите, что \( \angle O_{1} MO_{2}= \angle AKB = 90 ^{\circ} \)

Решение №17341: \(O_{1}MO_{2}\) — угол между биссектрисами смежных углов, поэтому \(\angle O_{1}MO_{2} = 90^{\circ}\) (рис. 167). Поскольку \(MA = MK = MB\), точка \(K\) лежит на окружности с диаметром \(AB\), следовательно, \( \angle AKB = 90^{\circ}\).

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, касательная к окружности,

Задача в следующих классах: 7 класс

Сложность задачи : 2

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

В острый угол, равный \( 60^{\circ} \), вписаны две окружности, касающиеся друг друга внешним образом. Радиус меньшей окружности равен \(r\). Найдите радиус большей окружности.

Решение №17342: Пусть \(R\) — радиус большей окружности (см. рис. ниже). Опустим перпендикуляр из центра меньшей окружности на радиус большей окружности, проведенный в точку касания с одной из сторон данного угла. Получим прямоугольный треугольник с гипотенузой \(R + r\), катетом \(R − r\) и острым углом, равным \(30^{\circ}\), противолежащим этому катету. Тогда\(R + r = 2(R − r)\). Отсюда находим, что \(R = 3r\).

Ответ: 3r

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, касательная к окружности,

Задача в следующих классах: 7 класс

Сложность задачи : 2

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Две окружности касаются внутренним образом. Известно, что два радиуса большей окружности, угол между которыми равен \( 60^{\circ}\), касаются меньшей окружности. Найдите отношение радиусов окружностей.

Решение №17343: Пусть окружности с центрами \(O\)‍ и \(O_{1}‍\) и радиусами \(R\)‍ и \(r‍ (R > r)\)‍ соответственно касаются внутренним образом в точке\( A\),‍ а радиусы \(OB\)‍ и \(OC‍\) большей окружности касаются меньшей соответственно в точках \(M\)‍ и \(N\),‍ причём \(\angle BOC = 60‍^{\circ}\)∘.‍ Поскольку центр окружности, вписанной в угол, лежит на биссектрисе этого угла, \(\angle AOB = 30^{\circ}\),‍ а так как линия центров двух касающихся окружностей проходит через точку их касания, то \(OO‍_{1} = OA − O‍_{1}A = R − r\).‍ Из прямоугольного треугольника OO‍_{1}M‍ находим, что \(OO‍_{1}= 2O‍_{1}M\), или \(R − r = 2r\),‍ откуда ‍\( \frac{r}{R}=\frac{1}{3} \) ‍

Ответ: \( \frac{1}{3} \)

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, касательная к окружности,

Задача в следующих классах: 7 класс

Сложность задачи : 2

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Две окружности касаются в точке \(A\). Прямая, проходящая через точку \(A\), пересекает эти окружности вторично в точках \(B\) и \(C\) соответственно. Докажите, что касательные, проведенные к этим окружностям в точках \(B\) и \(C\), параллельны.

Решение №17344: Пусть \(O_{1}\) и \(O_{1}\) — центры окружностей (см. рис. ниже). Тогда точки \(O_{1} , O_{2}\) и\( A\) лежат на одной прямой. Треугольники \(O_{1} AB\) и \(O_{2} AC\) — равнобедренные, поэтому \(\angle ABO_{1} = \angle BAO_{1} = \angle CAO_{2} = \angle ACO_{2}\), значит, прямая \(O_{1}B\) параллельна прямой \(CO_{2}\). Следовательно, параллельны и перпендикулярные к ним касательные.

Ответ: NaN

Верно ли утверждение предыдущей задачи для четырехугольника, в который можно вписать окружность?

Пока решения данной задачи,увы,нет...

Ответ: Нет.

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, касательная к окружности,

Задача в следующих классах: 7 класс

Сложность задачи : 2

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

В четырехугольнике \(MNPQ\) расположены две непересекающиеся окружности так, что одна из них касается сторон \(MN, NP\) и \(PQ\), а другая — сторон \(MN, MQ\) и \(PQ\). Точки \(B\) и \(A\) лежат соответственно на сторонах \(MN\) и \(PQ\), причем отрезок \(AB\) касается обеих окружностей. Найдите сторону \(MQ\), если \(NP = b\) и периметр четырехугольника \(BAQM\) больше периметра четырехугольника \(ABNP\) на \( 2p \).

Решение №17346: Поскольку в четырехугольники \(ABMQ\) и \(ABNP\) вписаны окружности (см. рис. ниже), \( MQ+AB=\frac{1}{2}P_{1} \) и \( AB+NP=\frac{1}{2}P_{2} \) \( P_{1} \) и \( P_{2} \) — периметры этих четырехугольников). Поэтому \( MQ-NP=\frac{1}{2}\left ( P_{1}-P_{2} \right )=p \) Отсюда находим, что \( MQ = NP + p = b + p\).

Ответ: b+p

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, касательная к окружности,

Задача в следующих классах: 7 класс

Сложность задачи : 3

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

На сторонах \(BC, CA\) и \(AB\) треугольника \(ABC\) взяты соответственно точки \(A_{1}, B_{1} \) и \(C_{1}\), причем \( AC_{1} = AB_{1}, BA_{1} = BC_{1}\) и \(CA_{1} = CB_{1}\). Докажите, что \(A_{1}, B_{1} \) и \(C_{1}\) — точки касания вписанной окружности со сторонами треугольника.

Решение №17347: Обозначим \(AC_{1} = AB_{1} = x, BA_{1} = BC_{1} = y, CA_{1} = CB_{1} = z, AB = c, AC = b, BC = a\) (рис. 172). Тогда \( x + z = b, x + y = c, z + y = a\). Из полученной системы уравнений находим, что \(AB_{1} = x = \frac{1}{2}\left ( b+c-a \right )=p-a \) , т.е. точка \(B_{1}\) совпадает с точкой касания вписанной окружности со стороной \(AC\). Аналогично для точек \(A_{1}\) и \(C_{1}\).

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Окружность и круг, касательная к окружности,

Задача в следующих классах: 7 класс

Сложность задачи : 3

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Суммы противоположных сторон выпуклого четырехугольника равны между собой. Докажите, что все стороны четырехугольника касаются некоторой окружности.

Решение №17348: Первый способ. Пусть \(AB + CD = BC + AD\) и прямые \(AB\) и \(CD\) пересекаются в точке \(M\). Впишем окружность в треугольник \(AMB\). Пусть она полностью содержится в четырехугольнике \(ABCD\) (см. рис. ниже,а). Докажем, что она касается \(BC\). Если это не так, то проведем через точку \(B\) касательную к окружности, пересекающую \(CD\) в точке \(C_{1}\). Тогда \(AB + CD = BC + AD и AB + C_{1}D = BC_{1} + AD\). Вычитая почленно эти равенства, получим \(CC_{1} + BC_{1} = BC\), что невозможно. Аналогично рассматриваются остальные случаи. Второй способ. Пусть \(AB + CD = BC + AD − AD = BC − CD\). Рассмотрим случай, когда \( AB> AD \)(см. рис. ниже,б). Тогда \( BC > CD\). На отрезке \(AB\) возьмем такую точку \(T\), чтобы \( AT = AD\), а на отрезке \(BC\) — такую точку \(S\), чтобы \(CS = CD\). Тогда треугольники \(TBS, ADT\) и \(CDS\) равнобедренные. Биссектрисы их углов при вершинах \( B, A\) и \(C\) являются серединными перпендикулярами к отрезкам \(TS, DT\) и \(DS\) соответственно, т.е. серединными перпендикулярами к сторонам треугольника \(DTS\). Поэтому биссектрисы углов \(B, A\) и \(C\) пересекаются в одной точке — центре описанной окружности треугольника \(DTS\). Эта точка равноудалена от всех сторон четырехугольника \(ABCD\). Следовательно, она является центром вписанной окружности четырехугольника \(ABCD\). Аналогично для \(AB < AD\). Если же \(AB = AD\), то утверждение очевидно.

Ответ: NaN

Докажите, что катет прямоугольного треугольника меньше гипотенузы.

Решение №17349: Поскольку гипотенуза лежит против угла, равного \(90^{\circ}\) (т.е. против наибольшего угла треугольника), то она больше каждой из остальных сторон треугольника.

Ответ: NaN

Стороны равнобедренного треугольника равны 1 и 3. Какая из сторон является основанием?

Пока решения данной задачи,увы,нет...

Ответ: Сторона, равная 1.

Может ли основание равнобедренного треугольника быть вдвое больше боковой стороны?

Пока решения данной задачи,увы,нет...

Ответ: Нет.

Может ли периметр треугольника быть равным 19, если одна из его сторон на 1 короче другой и на 3 длиннее третьей?

Решение №17352: Пусть одна сторона = \(х\). Тогда вторая-\(х+1\), третья-\(х-3\). х+х+1+х-3=19 3х=21 х=7 4+7>8 4+8>7 7+8>4

Ответ: Может.

Может ли в треугольнике сторона быть вдвое больше другой стороны и вдвое меньше третьей?

Решение №17353: Пусть указанная сторона равна \(2x\).‍ Тогда остальные стороны равны \(x\)‍ и \(6x\).‍ Треугольник со сторонами \(x,‍ 2x\)‍ и \(6x\)‍ не существует, так как для этих сторон не выполняется неравенство треугольника \( (x + 2x = 3x < 6x)\).

Ответ: Нет.

Докажите, что высота треугольника \(ABC\), проведенная из вершины \(A\), не может быть больше стороны \(AB\).

Пока решения данной задачи,увы,нет...

Ответ: NaN

Докажите, что сумма высот треугольника меньше его периметра.

Решение №17355: Пусть \(h‍_{1},‍ h‍_{2},‍ h‍_{3}\) —‍ высоты треугольника, опущенные на стороны \( a,‍ b,‍ c\)‍ соответственно. Тогда \( h‍_{1} ≤ b,‍ h‍_{2} ≤ c,‍ h‍_{3} ≤ a\),‍ причём хотя бы в одном из случаев неравенство строгое. Сложив почленно эти три неравенства, получим, что \( h‍_{1} + h_{2}‍ + h‍_{3} < a + b + c\).‍ Что и требовалось доказать.

Ответ: NaN

В треугольнике \(ABC\) с неравными сторонами \(AB\) и \(AC\) проведены из вершины \(A\) высота, медиана и биссектриса. Докажите, что из этих трех отрезков наименьшим является высота.

Пока решения данной задачи,увы,нет...

Ответ: NaN

Сколько можно составить треугольников из отрезков, равных: а) 2, 3, 4 и 5; б) 2, 3, 4, 5, 6, 7?

Пока решения данной задачи,увы,нет...

Ответ: а) 3; б) 13.

В треугольнике две стороны равны 1 и 6. Найдите третью сторону, если известно, что ее длина равна целому числу.

Пока решения данной задачи,увы,нет...

Ответ: 6

В треугольнике \(ABC\) известно, что \(AB < BC < AC\), а один из углов вдвое меньше другого и втрое меньше третьего. Найдите угол при вершине \(A\).

Решение №17359: Поскольку в треугольнике против большей стороны лежит больший угол, то наименьший угол треугольника \(ABC\) лежит против стороны \(AB\), то есть это угол \(ACB\). Обозначим \(\angle C = \gamma \). Тогда \(\angle A = 2\gamma , \angle B = 3\gamma \). По теореме о сумме углов треугольника \(\gamma + 2\gamma + 3\gamma = 180^{\circ}\), откуда \gamma = 30^{\circ}\). Следовательно, \( \angle A = 2\gamma = 60^{\circ}\).

Ответ: 60^{\circ}

В треугольнике \(ABC\) угол \(A\) равен среднему арифметическому двух других углов. Укажите среднюю по величине сторону треугольника.

Решение №17360: Поскольку в треугольнике против большего угла лежит большая сторона , то средняя по величине сторона треугольника лежит против среднего по величине угла треугольника, а так как среднее арифметическое двух чисел содержится между этими числами, то средний по величине угол треугольника \(ABC\) —‍ это угол при вершине \(A\).‍ Следовательно, \(BC\) —‍ средняя по величине сторона треугольника \(ABC\).

Ответ: BC

Докажите, что диаметр есть наибольшая хорда окружности.

Решение №17361: Если хорда \(AB\) не является диаметром окружности с центром \(O\) (см. рис. ниже), то для равнобедренного треугольника \(AOB\) верно неравенство \(AB < OA + OB\).

Ответ: NaN

Даны четыре точки \(A, B, C\) и \(D\). Докажите, что \( AD < AB + BC + CD\).

Решение №17362: Из простейшего неравенства треугольника \(АВ + ВС > АС\); поэтому \(АВ + ВС + CD > AC + CD\); но \(АС + СD > AD\) (из того же неравества треугольника).

Ответ: NaN

Существует ли четырехугольник со сторонами, равными: а) 1, 1, 1, 2; б) 1, 2, 3, 6?

Пока решения данной задачи,увы,нет...

Ответ: а) Да; б) нет.

Высота прямоугольного треугольника, проведенная к гипотенузе, делит прямой угол на два неравных угла. Докажите, что катет, прилежащий к меньшему из них, меньше другого катета.

Решение №17364: Если \(CD\) — высота прямоугольного треугольника \(ABC\), проведенная к гипотенузе \(AB\) (см. рис. ниже), то \( \angle ACD = \angle ∠ABC и \angle ∠BCD = ∠\angle BAC\).

Ответ: NaN

Основание \(D\) высоты \(AD\) треугольника \(ABC\) лежит на стороне \(BC\), причем \( \angle BAD > \angle CAD\). Что больше, \(AB\) или \(AC\)?

Решение №17365: Если \( \angle BAD > \angle CAD\) (см. рис. ниже), то \( \angle ABC = 90^{\circ} − \angle BAD < 90^{\circ} − \angle CAD = ∠\angle ACB\).

Ответ: AB > AC

Докажите, что в треугольнике любая сторона меньше половины периметра.

Решение №17366: Пусть \(a, b, c\) — стороны треугольника. Тогда \(a + b + c = a + (b + c) > a + a = 2a\) , поэтому \( a< \frac{1}{2}\left ( a+b+c \right ) \) .

Ответ: NaN

Докажите, что в четырехугольнике любая диагональ меньше половины периметра.

Решение №17367: Пусть \(AC\) — диагональ четырехугольника \(ABCD\) (см. рис. ниже). Применяя неравенство треугольника к треугольникам \(ABC\) и \(ACD\), получим \(AC < AB + BC\) и \(AC < AD + CD\). Сложив почленно эти неравенства, найдем \( 2AC < AB + BC + AC + CD\), откуда \( AC< \frac{1}{2}\left ( AB+BC+AC+CD \right ) \) .

Ответ: NaN

Докажите, что сумма диагоналей выпуклого четырехугольника больше суммы его двух противоположных сторон.

Решение №17368: Пусть \(M\) — точка пересечения диагоналей \(AC\) и \(BD\) данного четырехугольника \(ABCD\) (см. рис. ниже). Тогда \(AB < AM+ BM\) и \(CD < CM + DM\). Сложив почленно эти неравенства, получим \(AB + CD < AM + BM + CM + DM = (AM + CM) + (BM + DM) = AC + BD\).

Ответ: NaN

Четыре дома расположены в вершинах выпуклого четырехугольника. Где нужно вырыть колодец, чтобы сумма расстояний от него до четырех домов была наименьшей?

Решение №17369: В точке пересечения диагоналей четырехугольника. Указание. Предположите, что искомая точка не лежит на одной из диагоналей, и примените неравенство треугольника.

Ответ: NaN

Докажите, что сумма диагоналей выпуклого четырехугольника меньше периметра, но больше полупериметра этого четырехугольника.

Решение №17370: Пусть \(M\) – точка пересечения диагоналей \(AC\) и \(BD\) четырёхугольника \(ABCD\). Применим неравенство треугольника к треугольникам \(ABC, ADC, BAD\) и\( BCD: AC < AB + BC, AC < DA + DC, BD < AB + AD, BD < CB + CD\). Сложив эти четыре неравенства, получим: \( 2(AC + BD) < 2(AB + BC + CD + AD)\). Запишем неравенства треугольника для треугольников \(AMB, BMC, CMD и AMD: AM + MB > AB, BM + MC > BC, MC + MD > CD, MA + MD > AD\). Сложив эти неравенства, получим: \(2(AC + BD) > AB + BC + CD + AD\).

Ответ: NaN

Докажите, что отрезок, соединяющий вершину равнобедренного треугольника с точкой, лежащей на основании, не больше боковой стороны треугольника.

Решение №17371: Пусть \(M\) — точка на основании \(BC\) равнобедренного треугольника \(ABC\), отличная от точек \(B\) и \(C\) (см. рис. ниже). Тогда один из углов \(AMB\) и \(AMC\) прямой или тупой. Предположим, \( \angle AMB > 90^{\circ}\). Тогда это наибольший угол треугольника \(AMB\), значит, \(AM < AB\).

Ответ: NaN

Биссектриса угла при основании \(BC\) равнобедренного треугольника \(ABC\) пересекает боковую сторону \(AC\) в точке \(K\). Докажите, что \(BK < 2CK\).

Решение №17372: Через точку \(K\) проведем прямую, параллельную основанию \(BC\) (см. рис. ниже). Пусть \(M\) — ее точка пересечения с боковой стороной \(AB\). Тогда \( \angle BKM = \angle CBK = \angle ABK\), значит, треугольник \( BMK\) равнобедренный, \( BM = MK = KC\). Следовательно, \(2CK = BM + MK > BK\).

Ответ: NaN

Две окружности радиусов \(r\) и \(R (r < R) \) пересекаются. Докажите, что расстояние между их центрами: а) меньше, чем \( r + R\); б) больше, чем \(R − r\).

Решение №17373: Пусть \(O_{1}\) и \(O_{2}\) — центры окружностей радиусов \(r\) и \(R\) соответственно (см. рис. ниже), A — одна из двух точек их пересечения. Для треугольника \( O_{1}AO_{2} \) верны неравенства \( O_{1}O_{2} < O_{1}A + O_{2}A\) и \(AO_{2} < O_{1}A + O_{1}O_{2}\), или \( O_{1}O_{2} < r + R и O_{1}O_{2} > AO_{2} − AO_{1} = R − r\).

Ответ: NaN

Расстояние между центрами окружностей радиусов 2 и 3 равно 8. Найдите наименьшее и наибольшее из расстояний между точками, одна из которых лежит на первой окружности, а другая — на второй.

Решение №17374: Докажем, что кратчайшее расстояние между точками двух окружностей, лежащих одна вне другой, есть отрезок линии центров, заключенный между окружностями. Пусть \(O_{1}\) и \(O_{2}\) — центры окружностей, а линия центров пересекает окружности в точках \(A\) и \(B\), причем и \(A\), и \(B\) лежат между \(O_{1}\) и \(O_{2}\) (см. рис. ниже). Тогда, если \(X\) и \(Y\) — другие точки этих окружностей, то \(XO_{1} + XY + YO_{2} > O_{1}O_{2} = AO_{1} + AB + BO_{2}\). Следовательно, \(XY > AB\). Пусть \(AM\) и \(BN\) — диаметры окружностей, а \(X\) и \(Y\) — точки окружностей, отличные от \(M\) и \(N\). Тогда \( XY < XO_{1} + O_{1}O_{2} + Y O_{2} = MO_{1} + O_{1}O_{2} + NO_{2} = MN\). В нашей задаче \(AB = 3\) и \( MN = 2 + 8 + 3 = 13\).

Ответ: 3 и 13.

Докажите, что каждая сторона треугольника видна из центра вписанной окружности под тупым углом.

Решение №17375: Если \( O\) — точка пересечения биссектрис треугольника \(ABC\), то \( \angle BOC=90^{\circ}+\frac{1}{2}\angle A \)

Ответ: NaN

Рассмотрим равнобедренные треугольники с одними и теми же боковыми сторонами. Докажите, что чем больше угол при вершине, тем меньше высота, опущенная на основание.

Решение №17376: Пусть \( ABC\) и \( A_{1}B_{1}C_{1}\) — равнобедренные треугольники с основаниями \(BC\) и \(B_{1}C_{1}\) (рис. 194), причем \(AB = AC = A_{1}B_{1} = A_{1}C_{1}\) и \( \angle A > \angle A_{1}, а \(AD\) и \(A_{1}D_{1}\) — их высоты. На продолжениях \(AD\) и \(A_{1}D_{1}\) за точки \(D\) и \(D_{1}\) отложим отрезки \(DM\) и \(D_{1}M_{1}\), соответственно равные \(AD\) и \(A_{1}D_{1}\). Тогда в треугольниках \(ACM\) и \(A_{1}C_{1}M_{1}\) известно, что \(AC = A_{1}C_{1}, CM = C_{1}M_{1}\) и \(\angle ACM < \angle A_{1}C_{1}M_{1}\). Значит, \(AM < A_{1}M_{1}\). Следовательно, \(AD < A_{1}D_{1}\).

Ответ: NaN

Рассмотрим равнобедренные треугольники с одними и теми же боковыми сторонами. Докажите, что чем больше основание, тем меньше проведенная к нему высота.

Решение №17377: Пусть \(a\) – боковая сторона, \(2b\) – основание, \(h\) – высота, опущенная на основание. Тогда \(a^{2} = h^{2} + b^{2} \), откуда все и следует.

Ответ: NaN

Докажите что из двух неравных хорд окружности большая удалена от центра на меньшее расстояние. Верно ли обратное?

Решение №17378: Воспользуемся следующей леммой (рис. 1). Если стороны \(XY\)‍ и \(XZ\)‍ треугольника \(XYZ\)‍ соответственно равны сторонам \(X‍_{1}Y‍_{1}\)‍ и \(X‍_{1}Z‍_{1}\)‍ треугольника \( X‍_{1}Y‍_{1}Z_{1}\),‍ а \(YZ > Y‍_{1}Z‍_{1}\),‍ то \(\angle YXZ > \angle Y‍_{1}X_{1}‍Z‍_{1}\).‍ Обратно, если \(XY = X‍_{1}Y‍_{1}\)‍ и \(XZ = X‍_{1}Z‍_{1}\),‍ а \( YXZ > \angle Y‍_{1}X‍_{1}Z‍_{1}\),‍ то \(YZ > Y‍_{1}Z‍_{1}\)‍. Пусть \(AB\)‍ и \(CD\) —‍ отличные от диаметра хорды окружности с центром \(O\)‍ (рис. 2), причём \(AB > CD,‍ M\)‍ и \(N\)‍ соответственно — проекции центра окружности на эти хорды. Тогда \(OM\)‍ и \(ON\) —‍ высоты равнобедренных треугольников \(AOB\)‍ и \(COD\)‍ с равными боковыми сторонами \(OA = OB = OC = OD\)‍ и неравными основаниями \(AB > AC\).‍ Докажем, что высота \(OM\)‍ треугольника \(AOB\)‍ с большим основанием \(AB\),‍ меньше высоты \(ON\)‍ треугольника \(COD\).‍ Действительно, по лемме \( \angle AOB > \angle COD\),‍ поэтому \( \angle OAB < \angle OCD\).‍ На продолжении отрезка \(OM‍\) за точку \(M\)‍ отложим отрезок \(MP\),‍ равный \(OM\),‍ а на продолжении отрезка \(ON\)‍ за точку \(N\) —‍ отрезок \(NQ\),‍ равный \(ON\).‍ Рассмотрим равнобедренные треугольники \(OAP‍\) и \(OCQ\).‍ Известно, что \(AP = AO = CO = CQ\)‍ и \( \angle OAP < \angle OCQ\),‍ поэтому \(OP < OQ\).‍ Следовательно, \(OM =\frac{1}{2}OP< ‍ ‍\frac{1}{2}CQ = ON\).‍ Что и требовалось доказать. Аналогично можно доказать и обратное, т. е. если расстояние от центра окружности до хорды \(AB\)‍ меньше расстояния от центра окружности до хорды \(CD\),‍ то \(AB > CD\).

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Задачи на построение с помощью циркуля и линейки,

Задача в следующих классах: 7 класс

Сложность задачи : 2

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Через данную точку внутри круга проведите наименьшую хорду.

Решение №17379: Искомая хорда перпендикулярна радиусу, проходящему через данную точку.

Ответ: NaN

Докажите, что медиана треугольника \(ABC\), проведенная из вершины \(A\), меньше полусуммы сторон \(AB\) и \(AC\), но больше их полуразности.

Решение №17380: Отложим на продолжении медианы \(AM\) за точку \(M\) отрезок \(MK\), равный \(AM\) (см. рис. ниже). Тогда \(CK = AB\). Применяя неравенство треугольника к треугольнику \(ABK\), получим \(2AM = AK < AB + BK = AB + AC\) и \(2AM = AK > AB − BK = AB − AC\). Отсюда следует, что \( \frac{1}{2}\left ( AB-AC \right )< AM < \frac{1}{2}\left ( AB+AC \right ) \) .

Ответ: NaN

Внутри треугольника \(ABC\) взята точка \(M\). Докажите, что угол \(BMC\) больше угла \(BAC\).

Решение №17381: Продолжим \(AM\) до пересечения со стороной \(BC\) в точке \(K\) (см. рис. ниже). Тогда \( \angle BMK = \angle BAM + \angle ABM > \angle BAM\) и \( \angle CMK = \angle CAM + \angle ACM > \angle CAM\). Следовательно, \( \angle BMC = \angle BMK + \angle CMK > \angle BAM + \angle CAM = \angle BAC\).

Ответ: NaN

Пусть \(CK\) — биссектриса треугольника \(ABC\) и \( AC > BC\). Докажите, что угол \( AKC\) — тупой.

Решение №17382: Поскольку угол \(B\) треугольника \(BCK\) (см. рис. ниже) больше угла \(A\) треугольника \(ACK\) (против большей стороны \(AC\) треугольника \(ABC\) лежит больший угол), а углы \(BCK\) и \(ACK\) этих треугольников равны, то \(\angle BKC < \angle AKC\), а так как это смежные углы, то угол \(AKC\) тупой.

Ответ: NaN

Пусть \(BD\) — биссектриса треугольника \(ABC\). Докажите, что \(AB > AD\) и \(CB > CD\).

Решение №17383: Угол \(ADB\) — внешний угол треугольника \(BDC\) (см. рис. ниже), поэтому \angle ADB > \angle CBD = \angle ABD\) , значит, в треугольнике \( ABD\) сторона \(AB\) больше стороны \(AD\). Аналогично, \(CB > CD\).

Ответ: NaN

В треугольнике \(ABC\) сторона \(AC\) больше стороны \(BC\). Медиана \(CD\) делит угол \(C\) на два угла. Какой из них больше?

Решение №17384: Отложим на продолжении медианы \(CD\) за точку \(D\) отрезок \(DC_{1}\), равный \(DC\) (см. рис. ниже). Тогда \(AC_{1} = BC\) и \( \angle AC_{1}C = \angle BCD\). В треугольнике \(CAC_{1}\) известно, что \( AC > AC_{1} = BC\). Следовательно, \(\angle ACD = \angle ACC_{1} < \angle AC_{1}C = \angle BCD\).

Ответ: NaN

Биссектриса треугольника делит его сторону на два отрезка. Докажите, что к большей из двух других сторон треугольника примыкает больший из них.

Решение №17385: Пусть \(BD\) — биссектриса треугольника \(ABC\) (см. рис. ниже) и \(AB > BC\). Рассмотрим точку \(C_{1}\), симметричную вершине \(C\) относительно биссектрисы угла \(B\). Тогда \(CD = C_{1}D\). Поскольку \(BC_{1} = BC < AB\), точка \(C_{1}\) лежит на отрезке \(AB\), а \(AC_{1}D\) — внешний угол треугольника \(BDC_{1}\), поэтому \(\angle AC_{1}D > \angle BDC_{1} = \angle BDC > \angle A\. Следовательно, \(CD = C_{1}D < AD\).

Ответ: NaN

\(AD\) — биссектриса треугольника \(ABC\), причем \(BD > CD\). Докажите, что \(AB > AC\).

Пока решения данной задачи,увы,нет...

Ответ: NaN

В треугольнике \(ABC\) известно, что \( \angleB > 90^{\circ}\). На отрезке \(BC\) взяты точки \(M\) и \(N\) (\(M\) между \(B\) и \(N\)) так, что лучи \(AN\) и \(AM\) делят угол \(BAC\) на три равные части. Докажите, что \(BM < MN < NC\).

Решение №17387: В треугольнике \(ABN\) (см. рис. ниже) угол \(B\) наибольший, поэтому \(AN > AB\), а так как \(AM\) — биссектриса треугольника \(ABN\), то \(MN > BM\). Неравенство \( MN < NC\) доказывается аналогично.

Ответ: NaN

В треугольнике \(ABC\) угол \(B\) прямой или тупой. На стороне \(BC\) взяты точки \(M\) и \(N\) так, что \(BM = MN = NC\). Докажите, что \( \angle BAM > \angle MAN > \angle NAC\).

Решение №17388: В треугольнике \(ABN\) сторона \(AN\) лежит против тупого или прямого угла \(ABN\), поэтому \(AN > AB\). На продолжении отрезка \(AM\) за точку \(M\) отложими отрезок \(MK\), равный \(AM\). Тогда четырёхугольник \(ANKB\) — параллелограм. Поэтому \(NK = AB < AN\). В треугольнике \(ANK\) против стороны \(AN\) лежит угол \(AKN\), больший угла, лежащего против стороны \(KN\), т.е. угла \(MAN\). Поэтому \( \angle BAM = \angle AKN > \angle MAN \). Аналогично докажем, что \(\angle MAN > \angle NAC\).

Ответ: NaN

Даны точки \(A\) и \(B\). Найдите геометрическое место точек, расстояние от каждой из которых до точки \(A\) больше, чем расстояние до точки \(B\).

Решение №17389: Содержащая точку B полуплоскость, граница которой — серединный перпендикуляр к отрезку AB.

Ответ: NaN

В треугольнике \(ABC\) с тупым углом \(C\) точки \(M\) и \(N\) расположены соответственно на сторонах \(AC\) и \(BC\). Докажите, что отрезок \(MN\) короче отрезка \(AB\).

Решение №17390: Поскольку \( \angle AMN = \angle MCN + \angle MNC > \angle C\), то угол \(AMN\) тупой (см. рис. ниже). Следовательно, \(AN\) — наибольшая сторона треугольника \(AMN\). Тогда \(MN < AN\). Аналогично докажем, что \(AB\) — наибольшая сторона треугольника \(ANB\). Поэтому \(AN < AB\). Следовательно, \(MN < AB\).

Ответ: NaN

Отрезок соединяет вершину треугольника с точкой, лежащей на противоположной стороне. Докажите, что этот отрезок меньше большей из двух других сторон.

Решение №17391: Пусть \(D\) — точка на стороне \(BC\) треугольника \(ABC\) (см. рис. ниже). Один из углов \(ADB\) и \(ADC\) не меньше прямого. Пусть \(\angle ADC > 90^{\circ}\). Тогда это наибольший угол треугольника \(ADC\), значит, \(AD < AC\). Если же \(\angle ADC > 90^{\circ}\), то аналогично докажем, что \(AD < AB\).

Ответ: NaN

Докажите, что расстояние между любыми двумя точками, взятыми на сторонах треугольника, не больше наибольшей из его сторон.

Решение №17392: Соедините одну из данных точек с противоположной вершиной треугольника и воспользуйтесь результатом предыдущей задачи.

Ответ: NaN

В треугольнике \(ABC\) на наибольшей стороне \(BC\0, равной \(a\), выбирается точка \(M\). Найдите наименьшее расстояние между центрами окружностей, описанных около треугольников \(BAM\) и \(ACM\).

Решение №17393: Проекции центров \( O_{1}\) и \(O_{2}\) данных окружностей на \(BC\) — середины \(P\) и \(Q\) отрезков \(BM\) и \(MC\) (рис. 204). Тогда \( O_{1}O_{2}\geqslant PQ=\frac{1}{2}a \). Если \(AM\) — высота треугольника \(BAC\), то \( O_{1}O_{2}=PQ=\frac{1}{2}a \) . В остальных случаях \( O_{1}O_{2}> \frac{1}{2}a \) .

Ответ: \frac{1}{2}a

На биссектрисе внешнего угла \(C\) треугольника \(ABC\) взята точка \(M\), отличная от \(C\). Докажите, что \(MA + MB > CA + CB\).

Решение №17394: Пусть \( B_{1} \) — точка, симметричная точке \(B \) относительно прямой \(CM\) (см. рис. ниже). Поскольку биссектриса есть ось симметрии угла, точка \( B_{1}\) лежит на продолжении стороны \(AC\) за точку \( C, CB_{1} = CB\) и \(MB_{1} = MB\). Поэтому \(MA + MB = MA + MB_{1} > AB_{1} = CA + CB_{1} = CA + CB\).

Ответ: NaN

Угол при вершине \(A\) треугольника \(ABC\) равен \(60^{\circ}\). Докажите, что \(AB + AC < 2BC\).

Решение №17395: Если треугольник \(ABC\) равносторонний, то \(AB + BC = 2BC\). Пусть \( AB \neq AC\) (см. рис. ниже). При симметрии относительно биссектрисы угла \(A\) вершина \(C\) переходит в точку \(C_{1}\) луча \(AB\), а вершина \(B\) — в точку \(B_{1}\) луча \(AC\). При этом \( B_{1}C_{1} = BC, CC_{1} = AC, BB_{1} = AB\). Следовательно, \(2BC = BC + B_{1}C_{1} > BB_{1} + CC_{1} = AB + AC\)

Ответ: NaN

Пусть \(AA_{1}\) — медиана треугольника \(ABC\). Докажите, что угол \(A\) острый тогда и только тогда, когда \( AA_{1}> \frac{1}{2}BC \) .

Решение №17396: Пусть \( \angle BAC < 90^{\circ}\). Докажем, что точка \(A\) лежит вне окружности с диаметром \(BC\). Ясно, что точка \(A\) не может лежать на этой окружности, так как тогда \( \angle BAC = 90^{\circ}\). Предположим, что она внутри окружности (рис. 207,а), и продолжим отрезок \(BA\) до пересечения с окружностью в точке \(M\). Тогда \( \angle BAC > \angle BMC = 90^{\circ}\), что невозможно. Значит, точка \(A\) лежит вне окружности. Следовательно, \( AA_{1}> \frac{1}{2}BC \) . Пусть \( AA_{1}> \frac{1}{2}BC \) . Тогда точка \(A\) лежит вне окружности с диаметром \(BC\). Если луч \(AB\) пересекает окружность в точке \(M\) (рис. 207,б), то \( \angle BAC < \angle BMC = 90^{\circ}\).

Ответ: NaN

Точки \(D\) и \(E\) — середины сторон соответственно \(AB\) и \(BC\) треугольника \(ABC\). Точка \(M\) лежит на стороне \(AC\), причем \(ME > EC\). Докажите, что \(MD < AD\).

Решение №17397: Поскольку \(ME\) — медиана треугольника \(BMC\) (см. рис. ниже) и \( ME > EC=\frac{1}{2}BC \) , то угол \(BMC\) острый . Значит, угол \(AMB\) тупой, следовательно, \( MD < \frac{1}{2}AB = AD\).

Ответ: NaN

Два противоположных угла выпуклого четырехугольника тупые. Докажите, что диагональ, соединяющая вершины этих углов, меньше другой диагонали.

Решение №17398: Постройте окружность на другой диагонали как на диаметре.

Ответ: NaN

Диагональ \(AC\) делит вторую диагональ выпуклого четырехугольника \(ABCD\) на две равные части. Докажите, что если \(AB > AD\), то \(BC < DC\).

Решение №17399: Пусть \(M\) — точка пересечения диагоналей \(AC\) и \(BD\) (см. рис. ниже). В треугольниках \(AMD\) и \(AMB\) сторона \(AM\) — общая, \(DM = MB\), а \( AD < AB \). Поэтому \( \angle AMD < \angle AMB\). Тогда \( \angle BMC < \angle CMD\). В треугольниках \(BMC\) и \(CMD\) сторона \(CM\) общая, \(DM = MB\), а \( \angle BMC < \angle CMD\). Следовательно, \( BC < DC\).

Ответ: NaN

Точка \(C\) лежит внутри прямого угла \(AOB\). Докажите, что периметр треугольника \(ABC\) больше \(2OC\).

Решение №17400: Пусть \( C_{1}\) — точка, симметричная точке \(C\) относительно прямой\( OA\) (см. рис. ниже), а \(C_{2}\) симметрична \(C\) относительно прямой \(OB\). Тогда точки \(C_{1}, O\) и \(C_{2}\) лежат на одной прямой, так как \( \angle C_{1}OC_{2} = \angle C_{1}OC + \angle COC_{2} = 2(\angle AOC + \angle COB) = 2 · 90^{\circ} = 180^{\circ}\). Следовательно, \(AC + BC + AB = AC_{1} + BC_{2} + AB > C_{1}C_{2} = 2OC\).

Ответ: NaN

Пусть вписанная окружность касается сторон \(AC\) и \(BC\) треугольника \(ABC\) в точках \(B_{1}\) и \(A_{1}\). Докажите, что если \(AC > BC\), то \(AA_{1} > BB_{1}\).

Решение №17401: Пусть \(B_{2}\) — точка, симметричная точке \(B\) относительно биссектрисы угла \(ACB\) (см. рис. ниже). Тогда \(BB_{1} = B_{2}A_{1}\). Рассмотрим треугольник \(AB_{2}A_{1}\). В этом треугольнике \( \angle AB_{2}A_{1} > \angle AB_{2}B = 180^{\circ} − CB_{2}B= 180◦ − \frac{1}{2}(180^{\circ} − \angle C) = 90^{\circ} + \frac{1}{2} + \angle C > 90^{\circ}\). Следовательно, \(BB_{1} = A_{1}B_{2} < AA_{1}\).

Ответ: NaN

Точка \(M\) расположена внутри треугольника \(ABC\). Докажите, что \(BM + CM < AB + AC\).

Решение №17402: Продолжим \(BM\) до пересечения со стороной \(AC\) в точке \(N\) (см. рис. ниже). Тогда \( AB + AN > BN = BM + MN и MN + NC > MC\). Сложив почленно эти неравенства, получим \(AB + AN + NC + MN > MN + BM + MC\), или \(AB + AC + MN > BM + MC + MN\). Отсюда следует, что \(AB + AC > BM + MC\).

Ответ: NaN

Докажите, что сумма расстояний от любой точки внутри треугольника до трех его вершин больше полупериметра, но меньше периметра треугольника.

Решение №17403: Cледует, что для точки \(M\), лежащей внутри треугольника \(ABC\) (см. рис. ниже), верны неравенства \(MB + MC < AB + AC, MB + MA < AC + BC, MA + MC < AB + BC\). Сложив их почленно, получим \(2(MA + MB + MC) < 2(AB + BC + AC)\). Отсюда следует, что указанная сумма расстояний меньше периметра треугольника. Применяя неравенство треугольника к треугольникам \(AMC, BMC\) и \(AMB\), получим \(AM + MC > AC, BM + MC > BC и AM + MB > AB\), откуда \( AM+BN+CM> \frac{1}{2}\left ( AB+AC+BC \right ) \) .

Ответ: NaN

Высота треугольника в два раза меньше его основания, а один из углов при основании равен \( 75^{\circ} \). Докажите, что треугольник равнобедренный.

Решение №17404: Пусть в треугольнике \(ABC\) угол \(BAC\) равен \( 75^{\circ}\), а высота \(BN\) вдвое меньше стороны \(AC\) (см. рис. ниже). Докажем, что \(BC = AC\). Предположим, что \(BC < AC\). Тогда \( \angle ABC> 75^{\circ}, \angle ACB< 30^{\circ}, BN< \frac{1}{2}BC< \frac{1}{2}AC \) что противоречит условию. Аналогично докажем, что \(BC\) не может быть больше \(AC\).

Ответ: NaN

Угол при вершине равнобедренного треугольника равен \( 20^{\circ} \). Докажите, что боковая сторона больше удвоенного основания, но меньше утроенного.

Решение №17405: На боковой стороне \(AC\) данного равнобедренного треугольника \(ABC\) отложим отрезок \(CD\), равный основанию \(BC\) (рис. 216,а). Тогда \( \angle ABD = 80^{\circ} −50^{\circ} = 30^{\circ}\), значит, в треугольнике \(ABD\) угол \(ABD\) больше угла \(BAD\), поэтому \(AD > BD > BC\) (в равнобедренном треугольнике \(BDC\) основание \(BD\) лежит против большего угла \(C\)). Следовательно, \( AC = AD + CD > BC + CD = 2BC\). Пусть точка \(B_{1}\) симметрична точке \(B\) относительно прямой \(AC\), а точка \(B_{2}\) симметрична \(C\) относительно \(AB_{1}\) (рис. 216,б). Тогда \(\angle BAB_{2} = 3\angle BAC = 60^{\circ} и AB_{2} = AB\), поэтому треугольник \(BAB_{2}\) равносторонний. Следовательно, \(AB = BB_{2} < BC + CB_{1} + B_{1}B_{2} = 3BC\).

Ответ: NaN

Сколько сторон может иметь выпуклый многоугольник, все диагонали которого равны?

Решение №17406: У квадрата и правильного пятиугольника все диагонали равны. Докажем, что других выпуклых многоугольников со всеми равными диагоналями не существует. Предположим, что все диагонали выпуклого многоугольника \(A_{1}A_{2} ...A_{1}\) равны и \(n \geqslant 6\) (рис. 217). Рассмотрим выпуклый четырехугольник \(A_{1}A_{2}A_{4}A_{5}\). Сумма длин его диагоналей \(A_{1}A_{4} \)и \(A_{2}A_{5}\) больше суммы противоположных сторон \(A_{2}A_{4}\) и \(A_{1}A_{5}\), что невозможно, так как по предположению эти суммы равны.

Ответ: 4 или 5.

В некотором царстве, в некотором государстве есть несколько городов, причем расстояния между ними все попарно различны. В одно прекрасное утро из каждого города вылетает по одному самолету, который приземляется в ближайшем городе. Может ли в одном городе приземлиться более пяти самолетов?

Решение №17407: Допустим, что в городе \(P\) приземляется, например, 6 самолетов,вылетевших из городов \(A_{1}, A_{2}, ..., A_{6}\), и точки \(A_{1}, A_{2}, ..., A_{6}\) — последовательные вершины шестиугольника (см. рис. ниже). Так как расстояние между городами \(A_{1}\) и \(A_{2}\) должно быть больше, чем расстояние от каждого из них до города \(P\), то \( \angle A_{1}PA_{2} > 60^{\circ}\) . Аналогично, углы \(A_{2}PA_{3}, A_{3}PA_{4}, A_{4}PA_{5}, A_{5}PA_{6}, A_{6}PA_{1}\) больше \(60^{\circ}\). Но тогда полный угол при точке \(P\) будет превосходить \(360^{\circ}\), что невозможно.

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Задачи на построение с помощью циркуля и линейки,

Задача в следующих классах: 7 класс

Сложность задачи : 2

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Постройте хорду данной окружности, равную и параллельную заданному отрезку.

Решение №17408: Геометрическое место середин хорд окружности, равных данному отрезку, — окружность, концентрическая данной.

Ответ: NaN

Экзамены с этой задачей:

Предмет и тема: Предмет и тема: Математика, Геометрия, Планиметрия, Задачи на построение с помощью циркуля и линейки,

Задача в следующих классах: 7 класс

Сложность задачи : 2

Задача встречается в следующей книге: Гордин Р. К. Г68 Геометрия. Планиметрия. 7–9 классы. — 3-е изд., испр. — М.: МЦНМО, 2006. — 416 с.: ил.

Постройте прямую, касающуюся данной окружности в данной точке, не используя центр окружности.

Решение №17409: Если точки \(A, B\) и \(C\) лежат на окружности, причем \(AC = BC\), то прямая, проходящая через точку \(C\) параллельно \(AB\), — касательная к окружности.

Ответ: NaN