Задачи

Фильтрация

Показать фильтрацию

По классам:

По предметам:

По подготовке:

По классам:

По авторам:

Решите уравнение: \(\frac{x-2}{5}+\frac{2\cdot x-5}{4}+\frac{4\cdot x-1}{20}=4-x\)

Решение №16687: \(\frac{x-2}{5}+\frac{2\cdot x-5}{4}+\frac{4\cdot x-1}{20}=4-x (\cdot 20); 4\cdot (x-2)+5\cdot (2\cdot x-5)+4\cdot x-1=20\cdot (4-x);4\cdot x-8+10\cdot x-25+4\cdot x-1=80-20\cdot x;18\cdot x+20\cdot x=80+8+25+1;38\cdot x=114;x=3\)

Ответ: 3

Решите уравнение: \(\frac{5\cdot x-4}{3}+\frac{3\cdot x-2}{6}+\frac{2\cdot x-1}{2}=3\cdot x-2\)

Решение №16688: \(\frac{5\cdot x-4}{3}+\frac{3\cdot x-2}{6}+\frac{2\cdot x-1}{2}=3\cdot x-2 (\cdot 6);2\cdot (5\cdot x-4)+3\cdot x-2+3\cdot (2\cdot x-1)=6\cdot (3\cdot x-2);10\cdot x-8+3\cdot x-2+6\cdot x-3=18\cdot x-12;19\cdot x-18\cdot x=-12+8+2+3;x=1\)

Ответ: 1

Решите уравнение: \(\frac{3-5\cdot x}{5}+\frac{3\cdot x-5}{3}+\frac{6\cdot x+7}{15}=2\cdot x+1\)

Решение №16689: \(\frac{3-5\cdot x}{5}+\frac{3\cdot x-5}{3}+\frac{6\cdot x+7}{15}=2\cdot x+1 (\cdot 15); 3\cdot (3-5\cdot x)+5\cdot (3\cdot x-5)+6\cdot x+7=15\cdot (2\cdot x+1);9-15\cdot x+15\cdot x-25+6\cdot x+7=30\cdot x+15;6\cdot x-30\cdot x=15-9+25-7;+24\cdot x=24;x=-1\)

Ответ: -1

Решите уравнение: \(2\cdot x+x\cdot (3-(x+1))=x\cdot (2-x)+12\)

Решение №16690: \(2\cdot x+x\cdot (3-(x+1))=x\cdot (2-x)+12;2\cdot x+x\cdot (3-x-1)=2\cdot x-x^{2}+12;2\cdot x+x\cdot (2-x)=2\cdot x-x^{2}+12;2\cdot x+2\cdot x-x^{2}-2\cdot x+x^{2}=12;2\cdot x=12;x=6\)

Ответ: 6

Решите уравнение: \(x^{2}\cdot (5\cdot x+3)-6\cdot x\cdot (x^{2}-4)=3\cdot x\cdot (8+x)\)

Решение №16691: \(x^{2}\cdot (5\cdot x+3)-6\cdot x\cdot (x^{2}-4)=3\cdot x\cdot (8+x);5\cdot x^{3}+3\cdot x^{2}-6\cdot x^{3}+24\cdot x=24\cdot x+3\cdot x^{2}; -x^{3}+3\cdot x^{2}-3\cdot x^{2}+24\cdot x-24\cdot x=0;-x^{3}=0;x=0\)

Ответ: 0

Решите уравнение: \(x\cdot (12-x)-5=4\cdot x-x\cdot (10-(3-x))\)

Решение №16692: \(x\cdot (12-x)-5=4\cdot x-x\cdot (10-(3-x));12\cdot x-x^{2}-5=4\cdot x-x\cdot (10-3+x);12\cdot x-x^{2}-5=4\cdot x-x\cdot (7+x);12\cdot x-x^{2}-5-4\cdot x+7\cdot x+x^{2}=0;15\cdot x=5;x=\frac{5}{15};x=\frac{1}{3}\)

Ответ: \(\frac{1}{3}\)

Решите уравнение: \(x\cdot (4\cdot x-11)-7\cdot x\cdot (x-1)=-2\cdot x\cdot (x+2)+1\)

Решение №16693: \(x\cdot (4\cdot x-11)-7\cdot x\cdot (x-1)=-2\cdot x\cdot (x+2)+1; 4\cdot x^{2}-11\cdot x-7\cdot x^{2}+7\cdot x+2\cdot x^{2}+4\cdot x=1;-x^{2}=1;x^{2}=-1\)

Ответ: Нет решений

Решите уравнение: \((7-10\cdot x)-(8-8\cdot x)+(10\cdot x+6)=-8\)

Решение №16696: \(7-10\cdot x-8+8\cdot x+10\cdot x+6=-8,8\cdot x=-8-7+8-6,8\cdot x=-13,x=-\frac{13}{8},x=-1\cdot \frac{5}{8}\)

Ответ: \(-1\cdot \frac{5}{8}\)

Целое число \(с\) является корнем многочлена \(P(x)\) с целыми коэффициентами. Докажите, что свободный член этого многочлена делится на \(с\).

Решение №16706: Воспользуйтесь равенством $(a_n\cdot(c^{n-1})+a_{n-1}c^{n-2}+\ldots+a_1)c+a_0=0$

Ответ: нет ответа

Несократимая дробь \(\frac {p}{q}\) является корнем многочлена \(P(x)\) с целыми коэффициентами. Докажите, что свободный член этого многочлена делится на \( p\), а старший коэффициент делится на \( q\).

Решение №16707: Воспользуйтесь равенством $(a_n\cdot(p^{n-1})+a_{n-1}p^{n-2}q+\ldots+a_1q^{n-1})p+a_0q^n=0$ и $a_np^n+q(a_n\cdot(p^{n-1})+\ldots+a_1pq^{n-2}+a_0q^{n-1}=0$ и тем, что числа \( q\) и \( p\) не имеют общих делителей

Ответ: нет ответа

Найдите числа \( m\) и \( n\), для которых многочлены \((x^2-1)(x+m)\) и \((x-1)(x+3)(x+n)\) равны.

Решение №16708: Подставьте в данные многочлены \(x=-3\) и \(х=-1\)

Ответ: m=3, n=1

Многочлен $(P(x)=a_0 x^n+a_1 x^(n-1)+\ldots+a_(n-1)x+a_n)$ с целыми коэффициентами принимает нечетное значение при\( x\)=\(0\). Докажите, что он принимает нечетные значения при всех четных\( x\).

Решение №16709: Если число \(х\) четное, то значение многочлена при делении на \(2\) дает такой же остаток, как число \(a_n=P(0)\)

Ответ: нет ответа

Многочлен $(P(x)=a_0 x^n+a_1 x^(n-1)+\ldots+a_(n-1)x+a_n)$ с целыми коэффициентами принимает нечетное значение при\( x\)=\(1\). Докажите, что он принимает четные значения при всех нечетных\( x\).

Решение №16710: Если число \(х\) нечетное, то значение многочлена при делении на \(2\) дает такой же остаток, как число \(a_0+a_1+\ldots+a_{n-1}+a_n=P(1)\)

Ответ: нет ответа

Выберите целое число \(a\) так, чтобы для некоторых целых \(b\) и \(с\) выполнялось равенство $(x-a)(x-10)+1=(x+b)(x+c)$.

Решение №16711: Положите \(х=10\). Тогда \((10+b)(10+c=1\), поэтому \(b=c=-9\) или \(b=c=-11\). В первом случае \((х-а)(х-10)+1=(х-11)^2\), поэтому \(а=12\)

Ответ: 8 или 12

Найдите все \(a\), для которых многочлены \(x^4+ax^2+1\) и \(x^3+ax+1\) имеют общий корень.

Решение №16712: Если \(x_0^4+ax_0^2+1=0\) и \(x_0^3+ax_0+1=0\), то $x_0^4+ax_0^2+1-x_0(x_0^3+ax_0+1)=0$, т.е. \(х_0=1\). В таком случае \(1+а+1=0\), т.е. \(а=-2\). При \(а=-2\) данные многочлены действительно имеют общий корень \(х_0=1\)

Ответ: a=-2

Многочлен \(P(x)\) при всех целых\( x\) принимает целые значения. Обязательно ли коэффициенты этого многочлена - целые числа?

Решение №16713: Рассмотрите многочлен \(Р(х)=\frac{x(x+1)}{2}\)

Ответ: Нет, не обязательно

Найдите сумму всех коэффициентов многочлена, который получается из выражения \(P(x)=(x^3-x+1)^{100})\) в результате раскрытия скобок и приведения подобных слагаемых.

Решение №16714: Сумма всех коэффициентов многочлена \(Р(х)\) равна \(Р(1)\)

Ответ: 1

Найдите сумму всех коэффициентов многочлена \((1+x)^n\).

Решение №16715: См. указание к задаче \(5.9\)

Ответ: 2^n

Дан многочлен \(P(x)=(x^3-x+1)^{100})\). Найдите сумму всех коэффициентов а) при четных степенях; б) при нечетных степенях.

Решение №16716: Сумма всех коэффициентов многочлена \(Р(х)\) равна \(Р(1)\), а разность между суммой коэффициентов многочлена \(Р(х)\) при четных степенях и суммой при нечетных степенях равна \(Р(-1)\). Поэтому сумма коэффициентов при четных степенях равна $\frac{Р(1)+Р(-1)}{2}=1$, а сумма коэффициентов при нечетных степенях равна $\frac{Р(1)-Р(-1)}{2}=0$

Ответ: а) 1; б) 0

а) Многочлен \((1+x-y)^3\) привели к стандартному виду. Чему равна сумма коэффициентов при всех одночленах? \(\begin{itemize} \item[\sffamily б)]\) Чему равна сумма коэффициентов при тех одночленах, которые не содержат \( y\)? \(\item[\sffamily в)]\) Чему равна сумма коэффициентов при тех одночленах, которые содержат\( x\)?

Решение №16717: Обозначим \(Р(x,y)=(1+x-y)^3\). \begin{itemize} \item[\sffamily а)] Сумма всех коэффициентов этого много равна \(Р(1,1)\). \item[\sffamily б)] Сумма коэффициентов при тех одночленах, которые не содержат \( y\), равна \(\Р(1,0)\). \item[\sffamily в)] Сумма коэффициентов при тех одночленах, которые содержат \(х\), равна \(Р(1,1)-Р(0,1)\). \end{itemize}

Ответ: а) 1; б) 8; в) 1

Докажите, что в произведении многочленов $(1+x+x^2+\ldots+x^{99}+x^{100})(1-x+x^2-x^3+\ldots-x^{99}+x^{100})$ после раскрытия скобок и приведения подобных членов не остается членов, содержащих\( x\) в нечетной степени.

Решение №16718: Данное произведение \(Р(х)\) имеет вид \(Q(x)Q(-x)\), поэтому \(Р(-х)=Р(х)\) и \(2Р(х)=Р(х)+Р(-х)\). В правой части все одночлены нечетной степени сокращаются

Ответ: нет ответа

Значение многочлена \(ax^3+bx^2+cx+d\) c целыми коэффициентами при любом целом\( x\) делится на \(5\). Докажите, что все коэффициенты многочлена делятся на \(5\).

Решение №16719: Подставив значение \(х=0\), получим, что \( d\) делится на \(5\). Подставив значения \(х=1\) и \(х=-1\),получим, что \(a+b+c\) и \(a-b+c\) деляться на \(5\), поэтому \(b\) и \(а+с\) делятся на \(5\). Подставив значение \(х=2\), получим, что \(4а+с\) делится на \(5\). Поэтому \(3а=(4а+с)-(а+с)\) делится на \(5\), а значит,\( а\) и \(с\) делятся на \(5\)

Ответ: нет ответа

Найдите коэффициенты многочлена \((1+x^5+x^7)^{20}\) при \(x^{17}\) и \(x^{18}\).

Решение №16720: Число \(18\) нельзя представить в виде суммы чисел \(5\) и \(7\), поэтому коэффициент при \(x^{18}\) равен \(0\). Число \(17\) представляется в виде суммы чисел \(5\) и \(7\) следующим образом: \(17=7+5+5\). С точностью о перестановки слагаемых это представление единственно. В одном из \(20\) множителей \(1+х^5+х^7\) мы должны выбрать \(х^7\), а в двух из \(19\) оставшихся выбрать \(х^5\). Поэтому коэффициент при \(х^17\) равен \(\Frac{20\cdot19\cdot18}{2}=3420\)

Ответ: 3420 и 0

Докажите, что любая натуральная степень многочлена $x^4+x^3-3x^2+x+2$ имеет хотя бы один отрицательный коэффициент.

Решение №16721: Пусть данный \(Р(х)\) - данный многочлен и \(Q(x)=(P(x)^n). Тогда \(Р(0)=Р(1)=2\) и \(Q(0)=Q(1)=2^n\). Поэтому \(Q(1)-Q(0)=0\). Но число (Q(1)-Q(0)\) равно сумме всех коэффициентов многочлена \( q\), кроме свободного члена

Ответ: нет ответа

Докажите, что остаток от деления многочлена \(P(x)\) на многочлен \(x-c\) равен \(P(с)\) (теорема Безу).

Решение №16722: Остаток от деления на многочлен \(х-с\) - это нулевой многочлен или многочлен степени \(0\), т.е. остаток - это некоторое число \(r\). Пусть \(Р(x)=Q(x)(x-c)+r\). При \(х=с\) получаем \(r=P(с)\)

Ответ: нет ответа

Докажите, что число \(с\) является корнем многочлена \(P(x)\) тогда и только тогда, когда \(P(x)\)делится на \(x-c\) без остатка.

Решение №16723: Воспользуйтесь задачей \(5.17\). Из равенства $P(x)=Q(x)(x-c)+r$ следует, что если \(с\) - корень многочлена \(Р(х)\), то \(r=P(с)=0\). Наоборот, если \(r=0\), то \(Р(с)=r=0\)

Ответ: нет ответа

Докажите, что наибольший общий делитель многочленов \(x^n-1\) и \(x^m-1\) равен \(x^d-1\), где \(d=НОД(m,n)\).

Решение №16724: См. указание к задаче \(4.42\)

Ответ: нет ответа

Найдите все пары целых чисел\( x\) и \( y\), для которых выполняется равенство \(x^2-8=y^2+4y\).

Решение №16725: Запишите данное равенство в виде \((y+2+x)(y+2-x)=-4\) и воспользуйтесь тем, что \((y+2+x)\) и \(y+2-x\) либо оба четны, либо оба нечетны

Ответ: (2, -2), (-2, -2)

Найдите все пары целых чисел\( x\) и \( y\), для которых выполняется равенство \(x^2+2=y^2+6\).

Решение №16726: Запишите данное равенство в виде \((x+1+y)(x+1-y)=7\)

Ответ: (3, ±3), (-5, ±3)

Докажите, что $(3+1)(3^2+1)(3^4+1)(3^8+1)(3^16+1)=\frac{3^[32]-1}{2}$.

Решение №16727: Умножьте данное выражение в виде на \(3-1\) и воспользуйтесь тем, что \((a-b)(a+b)=a^2-b^2\)

Ответ: нет ответа

Докажите, что \(2^{20-1}\) делится на \(25\).

Решение №16728: Воспользуйтесь тем, что \(2^{20}-1=(2^{10}-1)(2^{10}+1)\) и \(2^{10}+1=1025\)

Ответ: нет ответа

Числа \(a\) и \(b\) целые. Докажите, что если \(a^2+9ab+b^2\) делится на \(11\), то \(a^2-b^2\) тоже делится на \(11\).

Решение №16729: Из формулы квадрата разности следует, что \(a^2+-ab+b^2=(a-b)^2+11ab\). Поэтому число \((a-b)^2\) делится на \(11\). Число \(11\) простое, поэтому число \(a^2-b^2=(a-b)(a+b)\) тоже делится на \(11\)

Ответ: нет ответа

Найдите все натуральные числа \( m\) и \( n\), для которых \(2^m+7=n^2\).

Решение №16730: Из равенств $(n-3)(n+3)=n^2-9=2^m-2$ следует, что числа \(n+3\) и \(n-3\) четные. Поэтому число \(2^m-2\) делится на \(4\). Но при \(m>1\) это число не делится на \(4\)

Ответ: m=1, n=3

Подберите число \(с\) и многочлен \(P(x)\) так, чтобы выполнялось равенство \((x+1)P(x)+c(x^4+1)=1\).

Решение №16731: Воспользуйтесь тем, что $2=(x^4+1)-(x^4-1)=(x^4+1)-(x+1)(x-1)(x^2-1)$

Ответ: c=1/2 и P(x)=-1/2(x³ -x² -x+1)

Докажите, что если к произведению четырех последовательных натуральных числе прибавить \(1\), то получится квадрат натурального числа.

Решение №16732: Произведение чисел \(n-1, n, n+1\) и \(n+2\) равно $(n^2+n)(n^2+n-2)=(N+1)(N-1)$, где \(N=n^2+n-1\)

Ответ: нет ответа

Докажите, что сумма кубов трех последовательных натуральных чисел делится на \(9\).

Решение №16733: Сначала докажите, что \(n-1)^3+n^3+(n+1)^3=3n(n^2+2)\)). Затем воспользуйтесь задачей \(4.33\)

Ответ: нет ответа

Разложите на множители \((a+b)^3-(a-2b)^3\).

Решение №16734: нет указаний

Ответ: 9b(a² -ab+b²)

Докажите равенство \(x^3=\left(x\frac{x^3-2y^3}{x^3+y^3}\right)^3+\left(y\frac{2x^3-y^3}{x^3+y^3}\right)^3+y^3\).

Решение №16735: Сначала воспользовавшись задачей \(6.14\), докажите, что $(x^3+y^3)^3-(x^3-2y^3)^3=9y^3(x^6-x^3y^3+y^6). Затем докажите, что $x^3-(x\frac{x^3-2y^3}{x^3+y^3})^3=\frac{9x^3y^3(x^6-x^3y^3+y^6)}{(x^3+y^3)^3}= y^3-(y\frac{y^3-2x^3}{x^3+y^3})^3

Ответ: нет ответа

Докажите, что для любого многочлена \(P(x)\) с целыми коэффициентами и для любых различных целых чисел \(a\) и \(b\) число \(P(a)-P(b))\ делится на \(a-b\)

Решение №16736: Разность \(Р(а)-Р(b)\) представляет собой сумму выражений вида \(m(a^k-b^k)\) с целыми коэффициентами \( m\). Число \(a^k-b^k\) делится на \(a-b\)

Ответ: нет ответа

Докажите, что не существует многочлена \(P(x)\) с целыми коэффициентами, для которого \(Р(6)=5\) и \(Р(14)=9\).

Решение №16737: Воспользуйтесь задачей \(6.16\) и тем, что \(Р(14)-Р(6)=9-5=4\) не делится на \(14-6=8\)

Ответ: нет ответа

Докажите, что \(7^{2n}-4^{2n}\) делится на \(33\).

Решение №16738: Число \(7^{2n}-4^{2n}=(7^2)^n-(4^2)^n\) делится на \(7^2-4^2=33\) для любого \( n\)

Ответ: нет ответа

Докажите, что \(11^{10}-1\)делится на \(100\).

Решение №16739: Воспользуйтесь равенством $11^{10}-1=(11-1)(11^9+11^8+\ldots+11+1)$; во второй скобке стоит сумма десяти чисел, оканчивающихся на \(1\)

Ответ: нет ответа

Докажите, что \(2^{1000}-1\) делится на \(25\).

Решение №16740: Воспользуйтесь тем, что \(2^{1000}-1=(2^{20})^{50}-1\) и \(20^{20}-1\) делится на \(25\) согласно задаче \(6.8\)

Ответ: нет ответа

Докажите, что для любых натуральных \( n\) и \(r\) число \(10^{6n+r}-10^r\) делится на \(7\).

Решение №16741: Число \(10^{6n+r}-10^r=10^r(10^{6n}-1)\) делится на $10^6-1=999999=7\cdot142857$

Ответ: нет ответа

Последнюю цифру \(6n\)-значного числа, делящегося на \(7\), перенесли в начало. Докажите, что полученное число тоже делится на \(7\).

Решение №16742: Запишем исходное число\( а\) в виде \(А=10a+b\) и переставим последнюю цифру \(b\) в начало. В результате получим число \(B=10^{6n-1}b+a\). Число \(10B-A=(10^{6n}-1)^b делится на \(10^6-1=999\cdot1001=999\cdot143\cdot7\), поэтому оно делится на \(7\). Следовательно, число \(b\) тоже делится на \(7\)

Ответ: нет ответа

Число \(\frac{2^n-2}{n}\) целое. Докажите, что число \(\frac{2^[n-1]-2}{2^n-1}\) тоже целое.

Решение №16743: Пусть \(2^{2n}-2=mn\), где число \( m\) целое. Тогда $2^{2^n-1}-2=2(2^{mn}-1)$, число \(2^{mn}-1\) делится на \(2^n-1\)

Ответ: нет ответа

Докажите, что для любого натурального \(n>2\) число \(n^(n-1)-1\) делится на \((n-1)^2\).

Решение №16744: Воспользуйтесь тем, что $\frac{n^{n-1}-1}{n-1}=n^{n-2}+n^{n-3}+\ldots+n+1$ и каждое из \(n-1\) чисел \(1, n, \ldots, n^{n-3}, n^{n-2}$ при делении на \(n-1\) дает остаток \(1\)

Ответ: нет ответа

При нечетном \( n\) разделите многочлен \(x^n+y^n\) на \(x+y\).

Решение №16745: При нечетном \( n\) выполняются равенства \(x+y)(x^{n-1}+(-1)x^{n-2}y+\ldots+(-1)^{k-1}x^{n-k}y^{k-1}+\ldots+(-1)^{n-1}y^{n-1}=x^n+(-x^{n-1}y+x^{n-1}y)+(x^{n-2}y^2-x^{n-2}y^2)+\ldots+(xy^{n-1}-xy^{n-1})+y^n=x^n+y^n

Ответ: x^(n-2)y-x^(n-2)y+x^(n-3)y² -…-xy^(n-2)+y^(n-1)

Докажите, что \(43^{101}+23^{101}\) делится на \(66\).

Решение №16746: Воспользуйтесь тем, что \(a^n+b^n\) делится на \(a+b\) при нечетном \( n\)

Ответ: нет ответа

Докажите, что \(21^{10}-1\) делится на \(2200\).

Решение №16747: В разложении \(21^{10}-1=(21^5-1)(21^5+1)\) число \(21^5+1\) делится на \(21+1=22\), а число $21^5-1=(21-1)(21^4+21^3+21^2+21+1)\) делится на \(100\), поскольку второй множитель - сумма пяти чисел, оканчивающихся на \(1\)

Ответ: нет ответа

Докажите, что число \(2^9+2^{99}\) делится на \(100\).

Решение №16748: Воспользуйтесь равенством $2^9+2^{99}+2^9(2^{90}+1)=2^9(1024^9+1)$. Первый множитель делится на \(4\), второй делится на \(1024+1=1025\), поэтому второй множитель делится на \(25\)

Ответ: нет ответа

Докажите, что при четном \( n\) многочлен $x^{4n}+x^{4n-4}+\ldots+x^8+x^4+1$ делится на многочлен $x^{2n}+x^{2n-2}+\ldots+x^4+x^2+1$, а при нечетном \( n\) не делится.

Решение №16749: \(\frac{x^{4n}+x^{4n+4}+\ldots+x^8+x^4+1}{x^{2n}+x^{2n+2}+\ldots+x^4+x^2+1}=\frac{x^{4n+4}-1}{x^4-1}:\frac{x^{2n+2}-1}{x^2-1}=\frac{x^{2n+2}+1}{x^2+1}=\frac{(x^2)^{n+1}+1}{x^2+1}\). Если число \(n+1\) нечетно, то \(y^{n+1}+1\) делится на \(y+1\). А если \(n+1=2m\), то при делении \((x^2)^{n+1}+1=x^{4m}+1\) на \(x^2+1\) в остатке получается \(2\), так как \(x^{4m}-1\) делится на $x^4-1=(x^2-1)(x^2+1)$ и потому делится на \(x^2+1\)

Ответ: нет ответа

Раскройте скобки и приведите подобные члены: $(1+x+x^2+\ldots+x^{99}+x^{100})(1-x+x^2-x^3+\ldots-x^{99}+x^{100})$.

Решение №16750: Произведение многочленов $1+x+x^2+\ldots+x^{99}+x^{100}=\frac{x^{101}-1}{x-1}$ и $1-x+x^2-x^3+\ldots-x^{99}+x^{100}=\frac{X^{101}+1}{x+1}$ равно \(\frac{x^{202}-1}{x^2-1}

Ответ: 1+х² +х⁴+…+х^198+х^200

Докажите, что сумма \(1^n2^n+\ldots+(n-1)^n\) делится на \( n\) при нечетном \( n\).

Решение №16751: Воспользуйтесь тем, что \(k^n+(n-k)^n\) делится на \(k+(n-k)=n\) при нечетном \( n\)

Ответ: нет ответа

Докажите, что \(3^{2^n}-1\) делится на \(2^{n+2}\) и не делится на \(2^{n+3}\).

Решение №16752: В разложении $3^{2^n}-1=(3-1)(3+1)(3^2+1)(3^4+1)\ldots(3^{2^{n-1}}+1)\) все множители, кроме второго, делятся на \(2\) и не делятся на \(4\). В самом деле, согласно примеру \(4\) на с. \(20\) при делении на \(4\) квадрат нечетного числа дает в остатке \(1\)

Ответ: нет ответа

Представьте выражение \(2x^2+2y^2\) в виде суммы двух квадратов.

Решение №16753: нет указаний

Ответ: (x-y)^2+(x+y)^2

Представьте выражение \((x^2+y^2)(u^2+v^2)\) в виде суммы двух квадратов.

Решение №16754: нет указаний

Ответ: (xu-yʋ)²+(xʋ+yu)²

Докажите, что если \((x^2+y^2+z^2=xy+yz+zx)\), то \(x=y=z\).

Решение №16755: Воспользуйтесь тем, что \(2(x^2+y^2+z^2-xy-yz-zx)=(x-y)^2(y-z)^2+(z-x)^2\)

Ответ: нет ответа

Докажите, что если числа \(x, y, z\) положительны и $x^3+y^3+z^3=3xyz$, то \(x=y=z\).

Решение №16756: Воспользуйтесь тем, что \(2(x^3+y^3+z^3-3xyz)=(x+y+z)((x-y)^2(y-z)^2+(z-x)^2\)

Ответ: нет ответа

Выразите через \(a=x+y\) и \(b=xy\) суммы \(x^2+y^2, x^3+y^3, x^4+y^4, x^5+y^5\).

Решение №16757: нет указаний

Ответ: x²+y²=a⁵ -5a³b+5ab²

Существуют ли нечетные целые числа \(x, y\) и \(z\), удовлетворяющие равенству \((x+y)^2+(x+z)^2=(y+z)^2\)?

Решение №16758: Из данного равенства следует равенство \((x+y)(x+z)=2yz\). Если числа \(x, y\) и \(z\) нечетны, то левая часть делится на \(4\), а правая не делится

Ответ: Нет

Укажите многочлен, квадрат которого равен $\frac{(x+1)^4+x^4+z}{2}$.

Решение №16759: нет указаний

Ответ: х²+х+1

Укажите многочлен, квадрат которого равен $(z-x)^2(x-y)^2+(x-y)^2(y-z)^2+(y-z)^2(z-x)^2$.

Решение №16760: нет указаний

Ответ: (z-x)² +(x-y)² +(z-x)(x-y)

Упростить выражение \(\frac{\left ( 2p-q \right )^{2}+2q^{2}-3pq}{2p^{-1}+q^{2}}:\frac{4p^{2}-3pq}{2+pq^{2}}\)

Решение №16761: \(\frac{\left ( 2p-q \right )^{2}+2q^{2}-3pq}{2p^{-1}+q^{2}}:\frac{4p^{2}-3pq}{2+pq^{2}}=\frac{4p^{2}-4pq+q^{2}+2q^{2}-3pq}{\frac{2}{p}+q^{2}}\cdot \frac{2+pq^{2}}{p\left ( 4p-3q \right )}=\frac{\left ( 4p^{2}-7pq+3q^{2} \right )p}{2+pq^{2}}\cdot \frac{2+pq^{2}}{p\left ( 4p-3q \right )}=\frac{\left ( p-q \right )\left ( 4p-3q \right )}{4p-3q}=p-q=0.78-\frac{7}{25}=0.78-0.28=0.5\)

Ответ: 0.5

Упростить выражение \(\frac{a^{3}-a-2b-\frac{b^{2}}{a}}{\left ( 1-\sqrt{\frac{1}{a}+\frac{b}{a^{2}}} \right )\left ( a+\sqrt{a+b} \right )}:\left ( \frac{a^{3}+a^{2}+ab+a^{2}b}{a^{2}-b^{2}}+\frac{b}{a-b} \right )\)

Решение №16762: \(\frac{a^{3}-a-2b-\frac{b^{2}}{a}}{\left ( 1-\sqrt{\frac{1}{a}+\frac{b}{a^{2}}} \right )\left ( a+\sqrt{a+b} \right )}:\left ( \frac{a^{3}+a^{2}+ab+a^{2}b}{a^{2}-b^{2}}+\frac{b}{a-b} \right )=\frac{a^{4}-\left ( a^{2}+2ab+b^{2} \right )}{\left ( a-\sqrt{a+b} \right )\left ( a+\sqrt{a+b} \right )}:\left ( \frac{a\left ( a+1 \right )\left ( a+b \right )}{\left ( a-1 \right )\left ( a+b \right )}+\frac{b}{a-b} \right )=\frac{a^{4}-\left ( a+b \right )^{2}}{a^{2}-a-b}:\left ( \frac{a\left ( a+1 \right )}{a-b}+\frac{b}{a-b} \right )=\frac{\left ( a^{2}+a+b \right )\left ( a-b \right )}{a^{2}+a+b}=a-b=23-22=1\)

Ответ: 1

Упростить выражение \(\frac{\sqrt{2}\left ( x-a \right )}{2x-a}-\left ( \left ( \frac{\sqrt{x}}{\sqrt{2x}+\sqrt{a}} \right )^{2}+\left ( \frac{\sqrt{2x}+\sqrt{a}}{2\sqrt{a}} \right )^{-1} \right )^{\frac{1}{2}}\)

Решение №16763: \(\frac{\sqrt{2}\left ( x-a \right )}{2x-a}-\left ( \left ( \frac{\sqrt{x}}{\sqrt{2x}+\sqrt{a}} \right )^{2}+\left ( \frac{\sqrt{2x}+\sqrt{a}}{2\sqrt{a}} \right )^{-1} \right )^{\frac{1}{2}}=\frac{\sqrt{2}\left ( x-a \right )}{2x-a}-\left ( \frac{x}{\left ( \sqrt{2x}+\sqrt{a} \right )}+\frac{2\sqrt{a}}{\sqrt{2x}+\sqrt{a}} \right )^{\frac{1}{2}}=\frac{\sqrt{2}\left ( x-a \right )}{\left ( \sqrt{2x}-\sqrt{a} \right )\left ( \sqrt{2x}+\sqrt{a} \right )}-\frac{\sqrt{x}+\sqrt{2a}}{\sqrt{2x}+\sqrt{a}}=\frac{x\sqrt{2}-a\sqrt{2}-x\sqrt{2}+\sqrt{ax}-2\sqrt{ax}+a\sqrt{2}}{2x-a}=\frac{-\sqrt{ax}}{2x-a}=\frac{-\sqrt{0.32\cdot 0.08}}{2\cdot 0.08-0.32}=\frac{-0.16}{-0.16}=1\)

Ответ: 1

Упростить выражение \(\left ( \frac{\sqrt{x-a}}{\sqrt{x+a}+\sqrt{x-a}}+\frac{x-a}{\sqrt{x^{2}-a^{2}}-x+a} \right ):\sqrt{\frac{x^{2}}{a^{2}}-1}\)

Решение №16764: \(\left ( \frac{\sqrt{x-a}}{\sqrt{x+a}+\sqrt{x-a}}+\frac{x-a}{\sqrt{x^{2}-a^{2}}-x+a} \right ):\sqrt{\frac{x^{2}}{a^{2}}-1}=\left ( \frac{\sqrt{x-a}}{\sqrt{x+a}+\sqrt{x-a}}+\frac{\left ( \sqrt{x-a} \right )^{2}}{\sqrt{x-a}\left ( \sqrt{x+a}-\sqrt{x-a} \right )} \right ):\sqrt{\frac{x^{2}-a^{2}}{a^{2}}}=\left ( \frac{\sqrt{x-a}}{\sqrt{x+a}+\sqrt{x-a}}+\frac{\sqrt{x-a}}{\sqrt{x+a}-\sqrt{x-a}} \right )\cdot \frac{a}{\sqrt{x^{2}-a^{2}}}=\frac{\sqrt{x^{2}-a^{2}}-x+a+\sqrt{x^{2}-a^{2}}+x-a}{x+a-x+a}\cdot \frac{a}{\sqrt{x^{2}-a^{2}}}=\frac{2a\sqrt{x^{2}-a^{2}}}{2a\sqrt{x^{2}-a^{2}}}=1\)

Ответ: 1

Упростить выражение \(\frac{3a^{2}+2ax-x^{2}}{\left ( 3x+a \right )\left ( a+x \right )}-2+10\cdot \frac{ax-3x^{2}}{a^{2}-9x^{2}}\)

Решение №16765: \(\frac{3a^{2}+2ax-x^{2}}{\left ( 3x+a \right )\left ( a+x \right )}-2+10\cdot \frac{ax-3x^{2}}{a^{2}-9x^{2}}=\frac{-\left ( x+a \right )\left ( x-3a \right )}{\left ( 3x+a \right )\left ( a+x \right )}-2+10\cdot \frac{x\left ( a-3x \right )}{\left ( a-3x \right )\left ( a+3x \right )}=\frac{-x+3a}{3x+a}-2+\frac{10x}{3x+a}=\frac{-x+3a-6x-2a+10x}{3x+a}=1\)

Ответ: 1

Упростить выражение \(\frac{\sqrt{5-2\sqrt{6}}}{\left ( \sqrt[4]{3}+\sqrt[4]{2} \right )\left ( \sqrt[4]{3}-\sqrt[4]{2} \right )}\)

Решение №16766: \(\frac{\sqrt{5-2\sqrt{6}}}{\left ( \sqrt[4]{3}+\sqrt[4]{2} \right )\left ( \sqrt[4]{3}-\sqrt[4]{2} \right )}=\frac{\sqrt{3-2\sqrt{3\cdot 2}+2}}{\left ( \sqrt[4]{3} \right )^{2}-\left ( \sqrt[4]{2} \right )^{2}}=\frac{\sqrt{\left ( \sqrt{3}-\sqrt{2} \right )^{2}}}{\sqrt{3}-\sqrt{2}}=\frac{\sqrt{3}-\sqrt{2}}{\sqrt{3}-\sqrt{2}}=1\)

Ответ: 1

Некоторые из точек \(А\), \(В\), \(С\) и \(D\) могут совпадать, точки \(А\), \(В\) и \(С\) лежат на одной прямой, точки \(В\), \(С\) и \(D\) лежат на одной прямой. Обязательно ли точки \(А\), \(В\), \(С\) и \(D\) лежат на одной прямой?

Решение №16767: Точки \(В\) и \(С\) могут совпадать и не лежать на прямой \(О\) (рис. ниже).

Ответ: Нет.

Прямые \(A\), \(B\), \(C\) и \(D\) попарно различны, прямые \(A\), \(B\) и \(C\) пересекаются в одной точке, прямые \(B\), \(C\) и \(D\) пересекаются в одной точке. Докажите, что прямые \(A\), \(B\), \(C\) и \(D\) пересекаются в одной точке.

Решение №16768: Прямые \(а\) и \(d\) проходят через точку пересечения прямых \(b\) и \(с\).

Ответ: NaN

Некоторые из прямых \(A\), \(B\), \(C\) и \(D\) могут совпадать, прямые \(A\), \(B\) и \(C\) имеют общую точку, прямые \(B\), \(C\) и \(D\) имеют общую точку. Обязательно ли прямые \(A\), \(B\), \(C\) и \(D\) имеют общую точку?

Решение №16769: Прямые \(b\) и \(с\) могут совпадать и не проходить через точку пересечения прямых \(а\) и \(d\) (рис. ниже).

Ответ: Нет.

Отрезки \(АВ\), \(ВС\), \(CD\) и\( DE\) пересекают данную прямую, а их концы не лежат на ней. Пересекает ли эту прямую отрезок \(О\)? А отрезок \(АЕ\)?

Решение №16770: Точки \(А\), \(С\) и \(Е\) лежат по одну сторону от данной прямой, а точки \(В\) и \(D\) — по другую (рис. ниже).

Ответ: Да. Нет.

Отрезок \(АВ\) пересекает прямую \(l\), а отрезок \(АС\) её не пересекает. На отрезке \(АС\) отмечена точка \(D\). Пересекает ли отрезок \(BD \) прямую \(l\)?

Решение №16771: Точка \(В\) и отрезок \(АС\) лежат по разные стороны от прямой \(I\) (см. рис.).

Ответ: Да.

Отрезки \(АВ\) и \(CD\) пересекаются в точке, отличной от концов этих отрезков. Докажите, что отрезок \(ВD\) и прямая\( АС\) не пересекаются.

Решение №16772: Пусть \(О\) — точка пересечения отрезков \(АВ\) и \(CD\). Тогда отрезки \(OD\) и \(ОВ\) не пересекают прямую \(АС\) (рис. 66), поэтому точки \(О\), \(В\) и \(D\) лежат по одну сторону от прямой \(АС\).

Ответ: NaN

На плоскости отметили 9 точек и попарно соединили их отрезками. Может ли прямая, не проходящая ни через одну из отмеченных точек, пересекать ровно 20 отрезков?

Решение №16773: По одну сторону от прямой могут лежать 4 отмеченные точки, а по другую сторону — 5 отмеченных точек.

Ответ: Да.

На плоскости отметили 10 точек и попарно соединили их отрезками. Может ли прямая, не проходящая ни через одну из отмеченных точек, пересекать ровно 20 отрезков?

Решение №16774: Если m отмеченных точек лежит по одну сторону от прямой и \(10 — m\) — по другую, то прямая пересекает ровно \(m(1О — m)\) отрезков. Число 20 нельзя представить в виде произведения двух чисел, сумма которых равна 10.

Ответ: Нет.

На плоскости отметили несколько точек и попарно соединили их отрезками. Прямая, не проходящая ни через одну из отмеченных точек, пересекает 21 отрезок. Чему может быть равно число отмеченных точек?

Решение №16775: По разные стороны от прямой лежит либо 7 точек и З точки, либо 1 точка и 21 точка.

Ответ: 10 или 22.

На сколько частей могут делить плоскость 4 прямые, каждые две из которых пересекаются?

Пока решения данной задачи,увы,нет...

Ответ: На 8, 10 или 11.