Задачи

Фильтрация

Показать фильтрацию

По классам:

По предметам:

По подготовке:

По классам:

По авторам:

Имеется три сосуда, в которых содержится, соответственно, 10, 30 и 5 литров раствора соляной кислоты. Процентное содержание кислоты во втором сосуде на 10% больше, чем в первом, а содержание кислоты в третьем сосуде равно 40%. Половину раствора из второго сосуда перелили в первый, а другую половину – в третий. После этого процентное содержание кислоты в первом и третьем сосудах оказалось одинаковым. Сколько процентов кислоты содержал вначале первый раствор?

Пока решения данной задачи,увы,нет...

Ответ: 46

Имеется лом стали двух сортов, причем первый сорт содержит 10% никеля, а второй 30%. На сколько тонн стали больше нужно взять второго сорта, чем первого, чтобы получить 200т стали с содержанием никеля 25%?

Пока решения данной задачи,увы,нет...

Ответ: 100

Имеются два сплава меди и цинка. В первом сплаве меди в 2 раза больше, чем цинка, а во втором в 5 раз меньше, чем цинка. Во сколько раз больше надо взять второго сплава, чем первого, чтобы получить новый сплав, в котором цинка было бы в 2 раза больше, чем меди?

Пока решения данной задачи,увы,нет...

Ответ: 2

Один сплав состоит из двух металлов, входящих в него в отношении 1:2, а другой сплав содержит те же металлы в отношении 2:3. В каком отношении необходимо взять эти сплавы, чтобы получить новый сплав, содержащий те же металлы в соотношении 17:27?

Пока решения данной задачи,увы,нет...

Ответ: {9:35}

Имеются 2 сплава золота и серебра. В первом сплаве количества этих металлов находятся в отношении 1:2, а во втором сплаве – в отношении 2:3. Сколько граммов нужно взять первого сплава, чтобы получить 19г сплава, в котором золото и серебро находятся в отношении 7:12?

Пока решения данной задачи,увы,нет...

Ответ: 9

Вычислить вес сплава серебра с медью, зная, что сплавив его с 3кг чистого серебра, получат сплав 900-й пробы, а сплавив его с 2кг сплава 900-1 пробы, получат сплав 840-й пробы.

Пока решения данной задачи,увы,нет...

Ответ: 3

Решить уравнения: \( 3*5^{2x-1}-2*5^{x-1}=0.2 \)

Решение №17656: Из условия \( 3*5^{2x}-2*5^{x}=1, 3*5^{2x}-2*5^{x}-1 =0 \) Решая это уравнение как квадратное относительно \( 5^{x} \), получаем \( 5^{x}=-\frac{1}{3}, \varnothing \); или \( 5^{x}=1 \), откуда \( x = 0 \)

Ответ: 0

Решить уравнения: \( \lg \left ( 3-x \right )-\frac{1}{3}\lg \left ( 27-x^{3} \right )=0 \)

Решение №17657: ОДЗ: \( 3-x> 0, x< 3 x \) Перепишем уравнение в виде \( 3\lg \left ( 3-x \right )=\lg \left ( 27-x^{3} \right ), \lg \left ( 3-x \right )^{3}=\lg \left ( 27-x^{3} \right ) \) Тогда \( \left ( 3-x \right )^{3}=27-x^{3}\Rightarrow x^{2}-9x=0 \), откуда \( x_{1}=0, x_{2}=9; x_{2}=9 \) не подходит по ОДЗ.

Ответ: 0

Решить уравнения: \( \log _{2}\left ( 9-2x \right )=10^{\lg \left ( 3-x \right )} \)

Решение №17658: ОДЗ: \( \left\{\begin{matrix} 9-2^{x}> 0 & & \\ 3-x> 0 & & \end{matrix}\right.x< 3 \) Имеем \( \log _{2}\left ( 9-2x \right )=3-x, 9-2x=2^{3-x}. 2^{2x}-9*2^{x}+8=0 \) Решая это уравнение как квадратное относительно \( 2^{x} \), имеем \( \left ( 2^{x} \right )_{1}=1 \), или \( \left ( 2^{x} \right )_{2}=8 \), откуда \( x_{1}=0, x_{2}=3; x_{2}=3\) не подходит по ОДЗ.

Ответ: 0

Упростить выражение \( \log _{a+b}m+\log _{a-b}m-2\log _{a+b}m*\log _{a-b}m \), если известно, что \( m^{2}=a^{2}-b^{2} \)

Решение №17659: \( \log _{a+b}m+\log _{a-b}m-2\log _{a+b}m*\log _{a-b}m=\log _{a+b}m+\frac{\log _{a+b}m}{\log _{a+b}\left ( a-b \right )}-2\frac{\log _{a+b}m*\log _{a+b}m}{\log _{a+b}\left ( a-b \right )}=\log _{a+b}m*\left ( 1+\frac{1}{\log _{a+b}\left ( a-b \right )}-\frac{2\log _{a+b}m}{\log _{a+b}\left ( a-b \right )} \right )=\frac{\log _{a+b}m\left ( \log _{a+b}\left ( a-b \right ) \right )+1-2\log _{a+b}m}{\log _{a+b}\left ( a-b \right )} \) Так как \( m=\sqrt{a^{2}-b^{2}} \), то имеем \( \frac{\log _{a+b}\sqrt{a^{2}-b^{2}}\left ( \log _{a+b}\left ( a-b \right )+1-2\log _{a+b}\sqrt{a^{2}-b^{2}} \right )}{\log _{a+b}\left ( a-b \right )}=\frac{\log _{a+b}\sqrt{a^{2}-b^{2}}\left ( \log _{a+b}\left ( a-b \right )+1-\log _{a+b}\left ( a-b \right )-1 \right )}{\log _{a+b}\left ( a-b \right )}=\frac{\log _{a+b}\sqrt{a^{2}-b^{2}}*0}{\log _{a+b}\left ( a-b \right )}=0 \)

Ответ: 0

В колбе имеется раствор поваренной соли. Из колбы в пробирку отливается \frac{1}{5} часть раствора и выпаривают до тех пор, пока процентное содержание соли в пробирке не повысится вдвое. После этого выпаренный раствор выливают обратно в колбу. В результате содержание соли в колбе повышается на 1%. Определить исходное процентное содержание соли.

Пока решения данной задачи,увы,нет...

Ответ: 9

Имеются 3 куска сплава меди с никелем в отношениях 2:1, 3:1 и 5:1 по массе. Из них сплавлен кусок массой 12кг с отношением меди и никеля 4:1. Найдите массу каждого исходного куска, если масса первого была вдвое больше массы второго.

Пока решения данной задачи,увы,нет...

Ответ: {0.96,1.92,9.12}

Имеется два одинаковых по весу куска сплавов с различным процентным содержанием серебра. Если сплавить половину первого куска со вторым, то получившийся сплав будет содержать 40% сребра, а если сплавить первый кусок с половиной второго, то новый сплав будет содержать 50% серебра. Каково процентное содержание серебра в каждом из кусков?

Пока решения данной задачи,увы,нет...

Ответ: {30,60}

В двух сосудах содержатся растворы кислоты; в первом сосуде 70%-ный, во втором – 46%-ный. Из первого сосуда 1л раствора перелили во второй, и жидкость во втором сосуде перемешали. Затем из второго сосуда 1л раствора перелили в первый и также перемешали. После этого концентрация кислоты в первом сосуде стала равна 68%. Сколько жидкости было во втором сосуде, если известно, что в первом ее было 10л?

Пока решения данной задачи,увы,нет...

Ответ: 5

Сосуд емкостью 20л заполнен обезвоженной кислотой. Часть этой кислоты отлили, а сосуд долили водой. Затем снова отлили столько же жидкости, сколько в первый раз кислоты, и сосуд опять долили водой, в результате этого получился 16%-ный раствор кислоты. Сколько кислоты отлили из сосуда в первый раз?

Пока решения данной задачи,увы,нет...

Ответ: 12

Из сосуда с кислотой отлили 60л кислоты и долили 60л воды. После этого отлили 60л смеси и опять долили в сосуд 60л воды. После чего оказалось, что раствор содержит 10л кислоты. Сколько литров кислоты было в сосуде первоначально?

Пока решения данной задачи,увы,нет...

Ответ: 90

Имеются два раствора соли в воде. Для получения смеси, содержащей 10г соли и 90г воды, первого раствора требуется вдвое больше по массе, чем второго. Через неделю из каждого килограмма первого и второго растворов испарилось по 200г воды и для получения той же смеси, что и раньше, требуется первого раствора уже вчетверо больше по массе, чем второго. Сколько граммов соли содержалось в 100г каждого раствора первоначально?

Пока решения данной задачи,увы,нет...

Ответ: {5,20}

В 3 сосудах налито по 1кг различных растворов поваренной соли. Если смешать 200г первого раствора и 100г второго раствора, то в полученной смеси будет содержаться столько же соли, сколько ее содержится в 100г третьего раствора. Количества соли в трех растворах, взятые в порядке номеров растворов, образуют геометрическую прогрессию. Сколько граммов второго раствора нужно взять, чтобы в них содержалось столько же соли, сколько ее содержится в 100г третьего раствора?

Пока решения данной задачи,увы,нет...

Ответ: 200

Два вида удобрений А и В отличаются весовым содержанием азота, калия и фосфора. В удобрении А азота содержится в 3 раза больше, а фосфора в 2 раза больше по весу, чем калия. В удобрении В соответственно азота в \frac{5}{3} раза больше, а фосфора в 1,5 раза меньше, чем калия. Можно ли за счет смешивания удобрений А и В приготовить удобрение, в котором азота в 2, а фосфора в 3 раза больше, чем калия?

Пока решения данной задачи,увы,нет...

Ответ: Нет

Показать, что при условии \( x> 0 \) и \( y> 0 \) из равенства \( x^{ 2} + 4y^{ 2} = 12xy \) следует равенство \( \lg \left ( x+2y \right ) -2\lg 2 = 0.5\left ( \lg x+\lg y \right ) \)

Решение №17669: Из условия имеем: \( \left( x+2y \right )^{2}-2x*2y=12xy , \left ( x+2y \right )^{2}=16xy \) Прологарифмировав обе части полученного равенства по основанию 10, получим: \( \lg \left ( x+2y \right )^{2}=\lg 16xy , 2\lg \left ( x+2y \right )=\lg 16+\lg x+\lg y , 2\lg \left ( x+2y \right )=4\lg 2+\lg x+\lg y , \lg \left ( x+2y \right )-2\lg 2= 0.5\left ( \lg x +\lg y \right ) \)

Ответ: \( \lg \left ( x+2y \right )^{2}=\lg 16xy , 2\lg \left ( x+2y \right )=\lg 16+\lg x+\lg y , 2\lg \left ( x+2y \right )=4\lg 2+\lg x+\lg y , \lg \left ( x+2y \right )-2lg2= 05\left ( \lg x +\lg y \right ) )\

Упростить выражения: \( \frac{\log _{a}b-\log _{\sqrt{a}/b^{3}}\sqrt{b}}{\log _{a/b^{4}}b-\log _{a/b^{6}}b}\div \log _{b}\left ( a^{3}b^{-12} \right ) \)

Решение №17670: \( \frac{\log _{a}b-\log _{\sqrt{a}/b^{3}}\sqrt{b}}{\log _{a/b^{4}}b-\log _{a/b^{6}b}\div \log _{b}\left ( a^{3}b^{-12} \right )=\frac{\log _{a}b-\frac{\log _{a}\sqrt{b}}{\log _{a}\frac{\sqrt{a}}{b^{3}}}}{\frac{\log _{a}b}{\log _{a}\frac{a}{b^{4}}}-\frac{\log _{a}b}{\log _{a}\frac{a}{b^{6}}}}\div \frac{\log _{a}a^{3}*b^{-12}}{\log _{a}b}=\frac{\log _{a}b-\frac{\frac{1}{2}\log _{a}b}{{\frac{1}{2}-3\log _{a}b}}}{\frac{{\log _{a}b}}{1-4{\log _{a}b}}-\frac{{\log _{a}b}}{1-6{\log _{a}b}}}*\frac{\log _{a}b}}{3-12{\log _{a}b}}=\frac{-3{\log _{a}^{2}b\left ( 1-4\log _{a}b \right \)left ( 1-6\log _{a}b \right )}}{\left (-6\log _{a}^{2}b+4\log _{a}^{2}b \right \)left ( \frac{1}{2}-3\log _{a}b \right )}*\frac{\log _{a}b}{3\left ( 1-4\log _{a}b \right )}=\log _{a}b \)

Ответ: \( \log _{a}b )\

Решить уравнения: \( \log _{10}x+\log _{\sqrt{10}}x+\log _{\sqrt[3]{10}}x+...+\log _{\sqrt[10]{10}}x=5.5 \)

Решение №17671: ОДЗ: \( x> 0 \) Перейдем к основанию 10. Имеем \( \lg x+2\lg x+3\lg x+...+10\lg x=5.5, \left ( 1+2+3+...+10 \right \)lg x=5.5 \) В скобках сумма членов арифметической прогрессии \( S_{n} \) с \( a_{1}=1, d=1, a_{n}=10, n=10:S_{n}=\frac{a_{1}+a_{n}}{2}n=\frac{1+10}{2}*10=55 \) Тогда \( 55\lg x=5.5 \Leftrightarrow \lg x=\frac{1}{10} \), откуда \( x=\sqrt[10]{10} \)

Ответ: \( \sqrt[10]{10} )\

Решить уравнения: \( 3*4^{\log _{x}2}-46*2^{\log _{x}2-1}=8 \)

Решение №17672: ОДЗ: \( 0< x\neq 1 \) Имеем \( 3*2^{2\log _{x}2}-23*2^{\log _{x}2}-8=0 \) Решая уравнение как квадратное относительно \( 2\log _{x}2 \), найдем \( 2\log _{x}2=-\frac{1}{3}, \varnothing \); или \( 2\log _{x}2=8 \), откуда \( \log _{x}2=3, x=\sqrt[3]{2} \)

Ответ: \( \sqrt[3]{2} )\

Решить уравнения: \( \left ( \log _{2}x-3 \right \)log _{2}x+2\left ( \log _{2}x+1 \right \)log _{2}\sqrt[3]{2}=0 \)

Решение №17673: ОДЗ: \( x> 0 \) Из условия \( \log _{2}\sqrt[3]{2}=\log _{2}2^{\frac{1}{3}}=\frac{1}{3}, \log _{2}^{2}x-3\log _{2}x+\frac{2}{3}\log _{2}x+\frac{2}{3}=0, 3\log _{2}^{2}x-7\log _{2}x+2=0 \) Решая уравнение как квадратное относительно \( \log _{2}x \), имеем \( \left ( \log _{2}x \right )_{1}=\frac{1}{3} \), или \( \left ( \log _{2}x \right )_{2}=2 \), откуда \( x_{1}=\sqrt[3]{2}, x_{2}=4 \)

Ответ: \( \sqrt[3]{2}; 4 )\

Решить уравнения: \( \log _{x\sqrt{2}}-\log _{x}^{2}\sqrt{2}\log _{3x}27-\log _{x}\left ( 2x \right ) \)

Решение №17674: ОДЗ: \( 0< x\neq 1 \) Перепишем уравнение в виде \( \frac{1}{2}\log _{x}2-\frac{1}{4}\log _{x}^{2}2=3-\log _{x}2-1,\log _{x}^{2}2-6\log _{x}2+8=0 \) Решая это уравнение как квадратное относительно \( \log _{x}2 \), найдем \( \log _{x}2=2, \log _{x}2=4 \), откуда \( x^{2}=2 , x^{4}=2 \) Тогда \( x_{1}=-\sqrt{2}, x_{2}=\sqrt{2}, x_{3}=-\sqrt[4]{2}, x_{4}=\sqrt[4]{2}, x_{1}=-\sqrt{2}, x_{3}=-\sqrt[4]{2} не подходят по ОДЗ.

Ответ: \( \sqrt[4]{2}; \sqrt{2} )\

Решить уравнения: \( 6-\left ( 1+4*9^{4-2\log _{\sqrt{3}}3} \right \)log _{7}x=\log _{x}7 \)

Решение №17675: ОДЗ: \( 0< x\neq 1 \) Перейдем к основанию \( 6-\left ( 1+4*9^{\circ} \right \)log _{7}x=\frac{1}{\log _{7}x} \Leftrightarrow 5\log _{7}^{2}x-6\log _{7}x+1=0 \) Решая это уравнение как квадратное относительно \( \log _{7}x \), получим \( \left ( \log _{7}x \right )_{1}=\frac{1}{5} \), или \( \left ( \log _{7}x \right )_{2}=1 \), откуда \( x_{1}=\sqrt[5]{7}, x_{2}=7 \)

Ответ: \( \sqrt[5]{7}; 7 )\

Решить уравнения: \( \sqrt{\log _{a}x}+\sqrt{\log _{x}a}=\frac{10}{3} \)

Решение №17676: Из условия \( \left\{\begin{matrix} \log _{a}x\geq 0, & & & \\ 0< a\neq 1, & & & \\ 0< x\neq 1 & & & \end{matrix}\right. \sqrt{\log _{a}x}+\frac{1}{\sqrt{\log _{a}x}}-\frac{10}{3}=0 \Rightarrow 3\left ( \sqrt{\log _{a}x} \right )^{2}-10\sqrt{\log _{a}x}+3=0 \) Решая это уравнение как квадратное относительно \( \sqrt{\log _{a}x} \), получаем \( \left ( \sqrt{\log _{a}x} \right )_{1}=\frac{1}{3}, \left ( \log _{a}x \right )_{1}=\frac{1}{9} \), откуда \( x_{1}=\sqrt[9]{a} \), или \( \left ( \sqrt{\log _{a}x} \right )_{2}=3, \left ( log_{a}x \right )_{2}=9 \), откуда \( x_{2}=a^{9} \)

Ответ: \( \sqrt[9]{a} ; a^{9}, 0< a\neq 1 )\

Решить уравнения: \( 9^{x^{2}-1}-36*3^{x^{2}-3}+3=0 \)

Решение №17677: Имеем \( \frac{9^{x^{2}}}{9}-36*\frac{3^{x^{2}}}{27}+3=0, 3^{2x^{2}}-12*3^{x^{2}}+27=0 \) Решив уравнение как квадратное относительно \( 3^{ x^{2}} \), получим \( 3^{ x^{2}}= 3 \), откуда \( x^{2}= 1 x_{1,2}=\pm 1 \), или \( 3^{ x^{2}} = 9 \), откуда \( x^{ 2} = 2 , x_{3,4}=\pm 2 \)

Ответ: \( -\sqrt{2}; -1; 1; \sqrt{2} )\

Решить уравнения: \( \log _{x}9+\log _{x^{2}}729=10 \)

Решение №17678: ОДЗ: \( \left\{\begin{matrix} x> 0 & & \\ x\neq \pm 1 & & \end{matrix}\right.0< x\neq 1 \) Имеем \( \log _{x}9+\frac{3}{2}\log _{x}9=10, \log _{x}9=4 \), откуда \( x^{4}=9, x=\sqrt{3}, x=-\sqrt{3} \) не подходит по ОДЗ.

Ответ: \( \sqrt{3} )\

Решить уравнения: \( \log _{\sqrt{3}x}+\log _{\sqrt[4]{3}}+\log _{\sqrt[6]{3}}+...+\log _{\sqrt[16]{3}}=36 \)

Решение №17679: ОДЗ: \( x> 0 \) Перейдем к основанию 3. Получаем \( 2\log _{3}x+4\log _{3}x+6\log _{3}x+...+16\log _{3}x=36 \Leftrightarrow \left ( 2+4+6+...+16 \right \)log _{3}x=36 \Leftrightarrow \left ( 1+2+3+...+8 \right \)log _{3}x=18 \Leftrightarrow 36\log _{3}x=18 \Leftrightarrow \log _{3}x=\frac{1}{2} \), откуда \( x=\sqrt{3} \)

Ответ: \( \sqrt{3} )\

Решить уравнения: \( 3^{\log _{3}x+\log _{3}x^{2}+\log _{3}x^{3}+... \log _{3}x^{8}}=27x^{30} \)

Решение №17680: ОДЗ: \( x> 0 \) Перепишем уравнение в виде \( 3^{\log _{3}x+2\log _{3}x+3\log _{3}x+...+8\log _{3}x}=27x^{30} \Leftrightarrow \left ( 3^{\log _{3}x} \right )^{\left ( 1+2+3+...+8 \right )}=27x^{30} \Leftrightarrow x^{1+2+3+...+8}=27x^{30} \Leftrightarrow x^{6}=27 \), откуда \( x=\sqrt[6]{27}=\sqrt{3} \)

Ответ: \( \sqrt{3} )\

Решить уравнения: \( 5\log _{x/9}+\log _{9/x}x^{3}+8\log _{9x^{2}x^{2}}=2 \)

Решение №17681: ОДЗ: \( \left\{\begin{matrix} x> 0, & & & \\ x\neq \frac{1}{9}, & & & \\ x\neq \pm \frac{1}{3} & & & \end{matrix}\right. \) Перейдем к основанию 9. Имеем \( \frac{5\log _{9}x}{\log _{9}\frac{x}{9}}+\frac{\log _{9}x^{3}}{\log _{9}\frac{9}{x}}+\frac{8\log _{9}x^{2}}{\log _{9}9x^{2}}=2 \Leftrightarrow \frac{5\log _{9}x}{\log _{9}x-1}+\frac{3\log _{9}x}{1-\log _{9}x}+\frac{16\log _{9}x}{1+2\log _{9}x}=2 \Leftrightarrow 8\log _{9}^{2}x-6\log _{9}x+1=0 \) Решая это уравнение как квадратное относительно \( \log _{9}x \), получим \( \left ( \log _{9}x \right )_{1}=\frac{1}{4} \), или \( \left ( \log _{9}x \right )_{2}=\frac{1}{2} \), откуда \( x_{1}=\sqrt{3}, x_{2}=3 \)

Ответ: \( \sqrt{3}; 3 )\

Решить уравнения: \( 2^{x^{2}-1}-3^{x^{2}}=3^{x^{2}-1}-2^{x^{2} +2} \)

Решение №17682: Имеем \( \frac{2^{x^{2}}}{2}+4*2^{x^{2}}=\frac{3^{x^{2}}}{3}+3^{x^{2}}, \frac{9}{2}*2^{x^{2}}=\frac{4}{3}*3^{x^{2}}, \left ( \frac{2}{3} \right )^{x^{2}}=\left ( \frac{2}{3} \right )^{3} \) Тогда \( x^{2}=3 \), откуда \( x_{1}=- \sqrt{3} , x_{1}=\sqrt{3} \)

Ответ: \( -\sqrt{3};\sqrt{3} )\

Решить уравнения: \( \frac{10x^{2\lg ^{2}x}}{x^{3}}=\frac{x^{3\lg x}}{10} \)

Решение №17683: ОДЗ: \( 0< x\neq 1 \) Из условия имеем \( \frac{x^{2\lg ^{2}x}}{x^{3}*x^{3\lg x}}=\frac{1}{100} \Leftrightarrow x^{2\lg ^{2}x-3\lg x-3}=10^{-2} \) логарифмируя обе части этого уравнения по основанию 10, получим \( \lg x^{2\lg ^{2}x-3\lg x-3}=\lg 10^{-2} \Leftrightarrow \left ( 2\lg ^{2}x-3\lg x-3 \right \)lg x=-2 \Leftrightarrow 2\lg ^{2}x-3\lg ^{2}x-3\lg x+2=0 \Leftrightarrow 2\left ( \lg ^{3}x+1 \right )-3\lg x\left ( \lg x+1 \right )=0 \Leftrightarrow 2\left ( \lg x+1 \right \)left ( \lg ^{2}x-\lg x+1 \right )-3\lg x\left ( \lg x+1 \right )=0 \Leftrightarrow \left ( \lg x+1 \right \)left ( 2\lg ^{2}x-5\lg x+2 \right )=0 \Leftrightarrow \lg x+1=0 , 2\lg ^{2}x-5\lg x+2=0 \) Из первого уравнения имеем \( \lg x=-1, x_{1}=\frac{1}{10} \), а из второго \( \lg x=\frac{1}{2}, x_{2}=\sqrt{10} \), или \( \lg x=2, x_{3}=100 \)

Ответ: \( 0,1; \sqrt{10}; 100)\

Решить уравнения: \( 3*16^{x}+2*81^{x}=5*36^{x} \)

Решение №17684: Имеем \( 3*4^{2x}+2*9^{2x}-5*4^{x}*9^{x}=0 \Rightarrow 3*\left ( \frac{4}{9} \right )^{2x}-5*\left ( \frac{4}{9} \right )^{x}+2=0 \Rightarrow \left ( \frac{4}{9} \right )^{x}=\frac{2}{3} \), или \( \left ( \frac{4}{9} \right )^{x}=1 \), откуда \( x_{1}=\frac{1}{2}, x_{2}=0\)

Ответ: \( 0; \frac{1}{2} )\

Решить уравнения: \( \log _{2}\left ( 2-x \right )-\log _{2}\left ( 2-\sqrt{x} \right )=\log _{2}\sqrt{2-x}-0.5 \)

Решение №17685: ОДЗ: \( \left\{\begin{matrix} 2-x> 0 & & \\ 2-\sqrt{x}> 0 & & \end{matrix}\right.0\leq x< 2 \) Из условия имеем \( \log _{2}\frac{2-x}{2-\sqrt{x}}=\log _{2}\frac{\sqrt{2-x}}{\sqrt{2}} \Leftrightarrow \frac{2-x}{2-\sqrt{x}}=\frac{\sqrt{2-x}}{\sqrt{2}}\Leftrightarrow \frac{2-x}{2-\sqrt{x}}-\frac{\sqrt{2-x}}{\sqrt{2}}=0\Leftrightarrow \sqrt{2-x}\left ( \frac{\sqrt{2-x}}{2-\sqrt{x}}-\frac{1}{\sqrt{2}} \right )=0 \), откуда \( \frac{\sqrt{2-x}}{2-\sqrt{x}}-\frac{1}{\sqrt{2}}=0, \sqrt{4-2x}=2-\sqrt{x}, 4-2x=4-4\sqrt{x}+x, 3x-4\sqrt{x}=0, \sqrt{x}\left ( 3\sqrt{x}-4 \right )=0 \) Таким образом, \( x_{1}=0, x_{2}=\frac{16}{9} \)

Ответ: \( 0; \frac{16}{9} )\

Решить уравнения: \( \log _{x^{2}}16+\log _{2x}64=3 \)

Решение №17686: \left\{\begin{matrix} 0< x\neq \frac{1}{2} & & \\ x\neq 1 & & \end{matrix}\right. \frac{\log _{2}16}{\log _{2}x^{2}}+\frac{\log _{2}6 }{\log _{2}2x}=3 \Leftrightarrow \frac{4}{2\log _{2}x}+\frac{6}{1+\log _{2}x}-3=0 \Leftrightarrow 3\log _{2}^{2}x-5\log _{2}x-2=0 , \log _{2}x\neq 0 , \log _{2}x\neq -1 , \log _{2}x , \log _{2}x=-\frac{1}{3}, x_{1}=\frac{1}{\sqrt[3]{2}}=0.5\sqrt[3]{4}; \log _{2}x=2, x_{2}=4.

Ответ: \( 05\sqrt[3]{4}; 4 )\

Решить уравнения: \( 20\log _{4x}\sqrt{x}+7\log _{16x}x^{3}-3\log _{x/2}x^{2}=0 \)

Решение №17687: ОДЗ: \( \left\{\begin{matrix} x> 0, & \\ x\neq \frac{1}{4} & \\ x\neq \frac{1}{16} & \\ x\neq 2 & \end{matrix}\right. \) Перейдем к основанию 2: \( \frac{20\log _{2}\sqrt{x}}{\log _{2}4x}+\frac{7\log _{2}x^{3}}{\log _{2}16x}-\frac{3\log _{2}x^{3}}{\log _{2}\frac{x}{2}}=0 \Leftrightarrow \frac{10\log _{2}x}{2+\log _{2}x}+\frac{21\log _{2}x}{4+\log _{2}x}-\frac{6\log _{2}x}{\log _{2}x-1}=0 \Leftrightarrow 5\log _{2}^{3}x+3\log _{2}^{2}x-26\log _{2}x=0 \Leftrightarrow \log _{2}x\left ( 5\log _{2}^{2}x+3\log _{2}x-26 \right )=0 \Leftrightarrow \log _{2}x\left ( \log _{2}x+\frac{13}{5} \right \)left ( \log _{2}x-2 \right )=0 \), откуда \( \left ( \log _{2}x \right )_{1}=0 , \left ( \log _{2}x \right )_{2}=-\frac{13}{5}, \left ( \log _{2}x \right )_{3}=2 \) Итак \( x_{1}=1, x_{2}=2^{-\frac{13}{5}}=\frac{1}{4\sqrt[5]{8}}, x_{3}=4 \)

Ответ: \( 1; \frac{1}{4\sqrt[5]{8}}; 4 )\

Решить уравнения: \( \frac{8^{x}+2^{x}}{4^{x}-2}=5 \)

Решение №17688: ОДЗ: \( x\neq \frac{1}{2} \) Перепишем уравнение в виде \( 2^{3x}-5*2^{2x}+2^{x}+10=0 \), Пусть \( 2^{x}=y \) Тогда уравнение принимает вид \( y^{3}-5y^{2}+y+10=0 \) Разделим левую часть уравнения на \( y-2 . y^{3}-5y^{2}+y+10 y-2 - y^{3}-2y^{2} y^{2}-3y-5 -3y^{2}+y - -3y^{2}+6y -5y+10 - -5y+10 0 \) Уравнение можно представить в виде \( \left ( y-2 \right \)left ( y^{2}-3y-5 \right )=0 \), откуда \( y_{1}=2, y_{2,3}=\frac{3\pm \sqrt{29}}{2} \) Получили: \( 2^{x}=2 \Rightarrow x_{1}=1; 2^{x}=\frac{3-\sqrt{29}}{2}< 0 \) (нет решений); \( 2^{x}=\frac{3+\sqrt{29}}{2} \Rightarrow x_{3}=\log_{2}\frac{3+\sqrt{29}}{2}=\log_{2}\left ( 3+\sqrt{29} \right )-1 \)

Ответ: \( 1; \log_{2}\left ( 3+\sqrt{29} \right )-1 )\

Решить уравнения: \( \lg \left ( x^{3}+8 \right )-0.5\lg \left ( x^{2}+4x+4 \right )=\lg 7 \)

Решение №17689: ОДЗ: \( x+2> 0, x> -2 \) Перепишем уравнение в виде \( \lg \left ( x+2 \right \)left ( x^{2}-2x+4 \right )-0.5\lg \left ( x+2 \right )^{2}=\lg 7\Leftrightarrow \lg \left ( x+2 \right \)left ( x^{2}-2x+4 \right )-\lg \left ( x+2 \right )=\lg 7\Leftrightarrow \lg \frac{\left ( x+2 \right \)left ( x^{2}-2x+4 \right )}{x+2}=\lg 7\Leftrightarrowx^{2}-2x+4=7, x^{2}-2x-3=0 \), откуда \( x_{1}=-1, x_{2}=3 \)

Ответ: \( -1; 3 )\

Решить уравнения: \( \lg ^{2}\left ( 100x \right )+\lg ^{2}\left ( 10x \right )=14+\lg \frac{1}{x} \)

Решение №17690: ОДЗ: \( x> 0 \) Логарифмируя, имеем \( \left ( \lg 100+\lg x \right )^{2}+\left ( \lg 10+\lg x \right )^{2}=14-\lg x, 2\lg x+7\lg x-9=0 \) Решая это уравнение как квадратное относительно \( \lg x \), получаем \( \left ( \lg x \right )_{1}=-\frac{9}{2} \), или \( \left ( \lg x \right )_{2}=1 \), откуда \( x_{1}=10^{-\frac{9}{2}}, x_{2}=10 \)

Ответ: \( 10^{-\frac{9}{2}}; 10 )\

Решить уравнения: \( x^{\frac{\lg x+5}{3}}=10^{5+\lg x} \)

Решение №17691: ОДЗ: \( 0< x\neq 1 \) Логарифмируя обе части уравнения по основанию 10, имеем \( \lg x^{\frac{\lg x+5}{3}}=\lg 10^{5+\lg x}, \frac{\lg x+5}{3}\lg x=\left ( 5+\lg x \right \)lg 10, \lg ^{2}x+2\lg x-15=0 \) Решая это уравнение как квадратное относительно \( \lg x \), получаем \( \left (\lg x \right )_{1}=-5 \), или \( \left (\lg x \right )_{2}=3 \), откуда \( x_{1}=10^{-5}, x_{2}=1000 \)

Ответ: \( 10^{-5}; 10^{3} )\

Решить уравнения: \( 2\lg x^{2}-\left ( \lg \left ( -x \right ) \right )^{2}=4 \)

Решение №17692: ОДЗ: \( x< 0 \) Учитывая, что \( x< 0 \) имеем \( 4\lg \left ( -x \right )-\lg ^{2}\left ( -x \right )-4=0\Leftrightarrow \lg ^{2}\left ( -x \right )-4\lg \left ( -x \right )+4=0, \left ( \lg \left ( -x \right )-2 \right )^{2}=0 \), откуда \( \lg \left ( -x \right )=2, x=-100 \)

Ответ: \( -100 )\

Упростить выражения: \( \left ( \left ( \log _{b}^{4}a+\log _{a}^{4}b+2 \right )^{1/2}+2 \right )^{1/2}-\log _{b}a-\log _{a}b \)

Решение №17693: \(\left ( \left ( \log _{b}^{4}a+\log _{a}^{4}b+2 \right )^{1/2}+2 \right )^{1/2}-\log _{b}a-\log _{a}b=\left ( \left ( \log _{b}^{4}a+\frac{1}{\log _{b}^{4}a}+2 \right )^{1/2}+2 \right )^{1/2}-\log _{b}a-\frac{1}{\log _{b}a}=\sqrt{\sqrt{\frac{\log _{b}^{8}a+2\log _{b}^{4}a+1}{\log _{b}^{4}a}}+2}-\frac{\log _{b}^{2}a+1}{\log _{b}a}=\sqrt{\sqrt{\left ( \frac{\log _{b}^{4}a+1}{\log _{b}^{2}a} \right )^{2}}+2}-\frac{\log _{b}^{2}a+1}{\log _{b}a}=\sqrt{\frac{\log _{b}^{4}a+1}{\log _{b}^{2}a}+2}-\frac{\log _{b}^{2}a+1}{\log _{b}a}=\sqrt{\frac{\log _{b}^{4}a+2\log _{b}^{2}a+1}{\log _{b}^{2}a}}-\frac{\log _{b}^{2}a+1}{\log _{b}^a}=\sqrt{\left ( \frac{\log _{b}^{2}a+1}{\log _{b}^a} \right )^{2}}-\frac{\log _{b}^{2}a+1}{\log _{b}a}=\frac{\log _{b}^{2}a+1}{\left | \log _{b}a \right |}-\frac{\log _{b}^{2}a+1}{\log _{b}a} \) Таким образом, получаем два случая: \( \left\{\begin{matrix} \log _{b}a< 0\) или \( \left\{\begin{matrix} 0< b< 1, & & \\ a> 1 & & \end{matrix}\right. \cup \left\{\begin{matrix} b> 1, & & \\ 0< a< 1; & & \end{matrix}\right. & & \\ -\frac{\log _{b}^{2}a+1}{\log _{b}a}-\frac{\log _{b}^{2}a+1}{\log _{b}a}=\frac{-2\left ( \log _{b}^{2}a+1 \right )}{\log _{b}a}=-2\left ( \log _{b}a+\log _{a}b \right ); & & \end{matrix}\right. \left\{\begin{matrix} \log _{b}a> 0\) или \( \left\{\begin{matrix} 0< b< 1, & & \\ 0< a< 1 & & \end{matrix}\right. \cup \left\{\begin{matrix} b> 1, & & \\ a> 1; & & \end{matrix}\right. & & \\ \frac{\log _{b}^{2}a+1}{\log _{b}a}-\frac{\log _{b}^{2}a+1}{\log _{b}a}=0 & & \end{matrix}\right. \)

Ответ: \( -2\left ( \log _{b}a+\log _{a}b \right ) )\, если \( \left\{\begin{matrix} a> 1, & & \\ 0< b< 1 & & \end{matrix}\right )\ или \( \left\{\begin{matrix} 0< a< 1, & & \\ b> 1 & & \end{matrix}\right )\ и 0, если \( \left\{\begin{matrix} 0< a< 1, & & \\ 0< b< 1 & & \end{matrix}\right )\, или \( \left\{\begin{matrix} a> 1, & & \\ b> 1 & & \end{matrix}\right )\

Решить уравнения: \( \frac{2}{\sqrt{3}\log_{2}\sqrt{x^{2}}}-\frac{1}{\sqrt{\log_{2}\left ( -x \right )}}=0 \)

Решение №17694: ОДЗ: \( \left\{\begin{matrix} x^{2}> 0, & & & \\ -x> 0, & & & \\ \log_{2}\left ( -x \right )> 0 & & & \end{matrix}\right. \Leftrightarrow x< -1 \) Так как по ОДЗ \( x< 0 \), то имеем \( \frac{2}{\sqrt{3}\log_{2}\left ( -x \right )}=\frac{1}{\sqrt{\log_{2}\left ( -x \right )}} \Rightarrow \frac{4}{3\log_{2}^{2}\left ( -x \right )}=\frac{1}{\log_{2}\left ( -x \right )} \Leftrightarrow 3\log_{2}^{2}\left ( -x \right )-4\log_{2}\left ( -x \right )=0 \Leftrightarrow \log_{2}\left ( -x \right \)left ( 3\log_{2}\left ( -x \right )-4 \right )=0 \Leftrightarrow \log_{2}\left ( -x \right )=\frac{4}{3} \), так как \( \log_{2}\left ( -x \right \)neq 0 \) Отсюда \( -x=2^{4/3}, x=-2^{4/3} \)

Ответ: \( -2^{4/3} )\

Решить уравнения: \( 3*4^{x-2}+27=a+a*4^{x-2} \) При каких значениях \( a \) уравнение имеет решение?

Решение №17695: Перепишем уравнение в виде \( 3*4^{x-2}-a*4^{x-2}=a-27 \Leftrightarrow \left ( 3-a \right )*4^{x-2}=a-27 \Rightarrow 4^{x-2}=\frac{a-27}{3-a} .\frac{a-27}{3-a}> 0 \) Логарифмируя обе части этого уравнения по основанию 4, получим \( \log _{4}4^{x-2}=\log _{4}\frac{a-27}{3-a} \Leftrightarrow x-2=\log _{4}\frac{a-27}{3-a}, x=2+\log _{4}\frac{a-27}{3-a} \), где \( \frac{a-27}{3-a}> 0 \) Решая полученное неравенство методом интервалов, имеем. Таким образом \( a\epsilon \left ( 3; 27 \right ) \)

Ответ: \( 2+\log _{4}\frac{a-27}{3-a} )\, где \( a\epsilon \left ( 3; 27 \right ) )\

Упростить выражения: \( \left ( 6\left ( \log _{b}a*\log _{a^{2}}b+1 \right )+\log _{b}a^{-6}+\log _{a}^{2}b \right )^{1/2}-\log _{a}b \) при \( a> 1 \)

Решение №17696: \( \left ( 6\left ( \log _{b}a*\log _{a^{2}}b+1 \right )+\log _{b}a^{-6}+\log _{a}^{2}b \right )^{1/2}-\log _{a}b=\left ( 6\left ( \frac{1}{2}+1 \right )-6\log _{a}b+\log _{a}^{2}b \right )^{1/2}-\log _{a}b=\sqrt{9-6\log _{a}b+\log _{a}^{2}b}-\log _{a}b=\sqrt{\left ( 3-\log _{a}b \right )^{2}}-\log _{a}b=\left | 3-\log _{a}b \right |-\log _{a}b \) Раскрывая модуль, получим два случая: \( \left | 3-\log _{a}b \right |-\log _{a}b=\left\{\begin{matrix} 3-\log _{a}b\leq 0, & & \\ -3+\log _{a}b-\log _{a}b=-3; & & \end{matrix}\right. \left\{\begin{matrix} b\geq a^{3}, & & \\ \left | 3-\log _{a}b \right |-\log _{a}b=-3; & & \end{matrix}\right. \left | 3-\log _{a}b \right |-\log _{a}b=\left\{\begin{matrix} 3-\log _{a}b> 0, & & \\ 3-\log _{a}b-\log _{a}b=3-2\log _{a}b; & & \end{matrix}\right. \left\{\begin{matrix} 0< b< a^{3} & & \\ \left | 3-\log _{a}b \right |-\log _{a}b=3-2\log _{a}b. & & \end{matrix}\right. \)

Ответ: \( -3 )\, если \( b\geq a^{3} )\, и \( 3-2\log _{a}b )\, если \( 0< b< a^{3}, b\neq 1 )\

Решить уравнения: \( 8^{\frac{2}{x}}-2^{\frac{3x+3}{x}}+12=0 \)

Решение №17697: ОДЗ: \( x\neq 0 \) Перепишем уравнение в виде \( 2^{\frac{6}{x}}-2^{3+\frac{3}{x}}+12=0, \left ( 2^{\frac{3}{x}} \right )^{2}-8*2^{\frac{3}{x}}+12=0 \) Решая это уравнение как квадратное относительно \( 2^{\frac{3}{x}} \), получаем \( \left (2^{\frac{3}{x}} \right )_{1}=2 \), откуда \( \left ( \frac{3}{x} \right )_{1}=1, x_{1}=3 \), или \( \left (2^{\frac{3}{x}} \right )_{2}=6 \), откуда \( \left ( \log _{2}2^{\frac{3}{x}} \right )_{2}=\log _{2}6, \left ( \frac{3}{x} \right )_{2}=\log _{2}6, x_{2}=\frac{3}{\log _{2}6}=3\log _{6}2=\log _{6}8 \)

Ответ: \( 3; \log _{6}8 )\

Решить уравнения: \( 27x^{\log _{27}x}=x^{10/3} \)

Решение №17698: ОДЗ: \( 0< x\neq 1 \) Логарифмируя обе части уравнения по основанию 3, имеем \( \log _{3}27x^{\log _{27}x}=\log _{3}x^{10/3}, 3+\frac{1}{3}\log _{2}^{3}x=\frac{10}{3}\log _{3}x, \log _{2}^{3}x-10\log _{3}x+9=0 \) Решая это уравнение как квадратное относительно \( \log _{3}x \), получаем \( \left ( \log _{3}x \right )_{1}=1 \), или \( \left ( \log _{3}x \right )_{2}=9 \), откуда \( x_{1}=3, x_{2}=3^{9} \)

Ответ: \( 3; 3^{9} )\

Решить уравнения: \( 2\log _{3}\left ( x-2 \right )+\log _{3}\left ( x-4 \right )^{2}=0 \)

Решение №17699: ОДЗ: \( \left\{\begin{matrix} x-2> 0 & & \\ x-4\neq 0 & & \end{matrix}\right.2< x\neq 4 \) Из условия \( 2\log _{3}\left ( x-2 \right )+2\log _{3}\left | x-4 \right |=0 или \( \log _{3}\left ( x-2 \right )+\log _{3}\left | x-4 \right |=0 \) Имеем: \( \left\{\begin{matrix} 2< x< 4 & & \\ \log _{3}\left ( x-2 \right )+\log _{3}\left ( 4-x \right )=0 & & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} 2< x< 4 & & \\ \log _{3}\left ( x-2 \right \)left ( 4-x \right )=0 & &\end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} 2< x< 4 & & \\ x^{2}-6x+9=0 & & \end{matrix}\right. \), откуда \( x_{1}=3 \); \left\{\begin{matrix} x> 4 & & \\ \log _{3}\left ( x-2 \right \)left ( x-2 \right )=0 & & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} x> 4 & & \\ \log _{3}\left ( x-2 \right \)left ( 4-x \right )=0 & & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} x> 4 & & \\ x^{2}-6x+7=0 & & \end{matrix}\right. \), откуда \( x_{2}=3+\sqrt{2} \)

Ответ: \( 3; 3+\sqrt{2} )\

Решить уравнения: \( \lg \left ( 5 -x \right ) +2 \lg \sqrt{ 3 -x} =1 \)

Решение №17700: ОДЗ: \( \left\{\begin{matrix} 5-x> 0 & \\ 3-x> 0 & \end{matrix}\right. x< 3 \) Имеем \( \lg \left ( 5-x \right )+\lg \left ( 3-x \right )=1 , \lg \left ( 5-x \right \)lg \left ( 3-x \right )=1 \), откуда \( \left ( 5-x \right )+\lg \left ( 3-x \right )=10 , x^{2}-8x+5=0 \) Тогда \( x_{1}= 4- \sqrt{11} , x_{2}= 4 + \sqrt{11} , x_{2}= 4+ \sqrt{11} \) не подходит по ОДЗ.

Ответ: \( 4- \sqrt{11} )\

Решить уравнения: \( 2\lg \sqrt{4-x}+\lg \left ( 6-x \right )=1 \)

Решение №17701: ОДЗ: \( \left\{\begin{matrix} 4-x> 0 & & \\ 6-x> 0 & & \end{matrix}\right.x< 4 \) Перепишем уравнение в виде \( \lg \left ( 4-x \right )+\lg \left ( 6-x \right )=1, \lg \left ( 4-x \right \)left ( 6-x \right )=1 \), откуда \( \left ( 4-x \right \)left ( 6-x \right )=10, x^{2}+10x-14=0 \) Следовательно, \( x_{1}=5-\sqrt{11}, x_{2}=5+\sqrt{11}; x_{2}=5+\sqrt{11} не подходит по ОДЗ.

Ответ: \( 5-\sqrt{11} )\

Решить уравнения: \( \sqrt{2\log _{8}\left ( -x \right )}-\log _{8}\sqrt{x}^{2}=0 ).

Решение №17702: ОДЗ: \( \left\{\begin{matrix} -x> 0, & & \\ x^{2}> 0, & & \end{matrix}\right.x< 0 \) Из условия имеем \( \sqrt{2\log _{8}\left ( -x \right )}-\log _{8}\left ( -x \right )=0 \sqrt{\log _{8}\left ( -x \right )}\left ( \sqrt{2}-\sqrt{\log _{8}\left ( -x \right )} \right )=0 \) Тогда \( \log _{8}\left ( -x \right )=0 \), откуда \( x_{1}=-1 \), или \( \sqrt{2}-\sqrt{\log _{8}\left ( -x \right )}=0 \), откуда \( \sqrt{2}=\sqrt{\log _{8}\left ( -x \right )}, 2=\log _{8}\left ( -x \right ), x_{2}=-64 \)

Ответ: \( -64; -1 )\

Решить уравнения: \( \log _{\sqrt{a}}\frac{\sqrt{2a-x}}{a}-\log _{1/a}x=0 \)

Решение №17703: ОДЗ: \( \left\{\begin{matrix} 0< a\neq 1 & & \\ 2a-x\geq 0 & & \end{matrix}\right. \Leftrightarrow \left\{\begin{matrix} 0< a\neq 1 & & \\ x\leq 2a & & \end{matrix}\right. \) Из условия имеем \( \frac{\log _{a}\frac{\sqrt{2a-x}}{a}}{\log _{a}\sqrt{a}}-\frac{\log _{a}x}{\log _{a}\frac{1}{a}}=0 \Leftrightarrow \log _{a}\left ( 2a-x \right )+\log _{a}x=2 \Leftrightarrow \log _{a}x\left ( 2a-x \right )=2 \), откуда \( x^{2}-2ax+a^{2}, \left ( x-a \right )^{2}=0 \Leftrightarrow x=a \)

Ответ: \( a )\, где \( 0< a\neq 1 )\

Зная, что \( \lg 2=a \), и \( \log _{2}7=b \), найти \( \lg 56 \)

Решение №17704: \( \lg 56 =\lg \left ( 7*8 \right )=\lg 7+\lg 8=\lg 7+3\lg 2=\frac{\log _{2}7}{\log _{2}10}+3\lg 2=\log _{2}7*\lg 2+3\lg 2=ab+3a=a\left ( b+3 \right ) \)

Ответ: \( a\left ( b+3 \right ) )\

Решить уравнения: \( \log _{a}x+\log _{\sqrt{a}}x+\log _{\sqrt[3]{a^{2}}}x=27 \)

Решение №17705: ОДЗ: \( \left\{\begin{matrix} x> 0, & & \\ 0< a\neq 1 & & \end{matrix}\right. \) Перейдем к основанию \( a \) Имеем \( \log _{a}x+2\log _{a}x+\frac{3}{2}\log _{a}x=27 \Leftrightarrow \log _{a}x=6 \), откуда \( x=a^{6}\)

Ответ: \( a^{6} )\, где \( 0< a\neq 1 )\

Решить уравнения: \( \log _{a}x+\log _{a^{2}}x+\log _{a^{3}}x=11 \)

Решение №17706: ОДЗ: \( \left\{\begin{matrix} x> 0, & & \\ 0< a\neq 1 & & \end{matrix}\right. \) Перейдем к основанию \( a \) Имеем \( \log _{a}x+\frac{1}{2}\log _{a}x+\frac{1}{3}\log _{a}x=11 \Leftrightarrow \log _{a}x=6 \), откуда \( x=a^{6} \)

Ответ: \( a^{6} , 0< a\neq 1 )\

Упростить выражения: \( \left ( b^{\frac{\log _{100}a}{\lg a}}*a^{\frac{\log _{100}b}{\lg b}} \right )^{2\log _{ab}\left ( a+b \right )} \)

Решение №17707: \( \left ( b^{\frac{\log _{100}a}{\lg a}}*a^{\frac{\log _{100}b}{\lg b}} \right )^{2\log _{ab}\left ( a+b \right )}=\left ( b^{\frac{1}{2}\frac{\lg a}{\lg b}}*a^{\frac{1}{2}\frac{\lg b}{\lg b}} \right )^{2\log _{ab}\left ( a+b \right )}=\left ( \left ( ab \right )^{\frac{1}{2}} \right )^{2\log _{ab}\left ( a+b \right )}=\left ( ab \right )^{\log _{ab}\left ( a+b \right )}=a+b \)

Ответ: \( a+b )\

Решить уравнения: \( \log _{x}m*\log _{\sqrt{m}}\frac{m}{\sqrt{2m-x}}=1 \)

Решение №17708: ОДЗ: \( \left\{\begin{matrix} 0< m\neq 1 & & & \\ 0< x\neq 1 & & & \\ x< 2m & & & \end{matrix}\right. \) Перейдем к основанию \( m \), тогда \( \frac{1}{\log _{m}x}*\frac{\log _{m}\frac{m}{\sqrt{2m-x}}}{\log _{m}m}=1 \Leftrightarrow \log _{m}x+\log _{m}\left ( 2m-x \right )=2 \Rightarrow \log _{m}x\left ( 2m-x \right )=2 \) Тогда \( x^{2}-2mx+m^{2}=0, \left ( x-m \right )^{2}=0 \), откуда \( x=m \)

Ответ: \( m )\, где \( 0< m\neq 1 )\

Решить уравнения: \( 10^{\frac{2}{x}}+25^{\frac{1}{x}}=4.25*50^{\frac{1}{x}} \)

Решение №17709: ОДЗ: \( x\neq 0 \) Разделив обе части уравнения на \( 25^{\frac{1}{x}} \), имеем \( 2^{\frac{2}{x}}-4.25\left ( 2^{ \frac{ 1}{ x}} \right ) + 1 = 0 \), откуда, решая уравнение как квадратное относительно \( 2^{\frac{1}{x}} \), получим \( \left (2^{\frac{1}{x}} \right )_{1}=\frac{1}{4} \), откуда \( \left ({\frac{1}{x}} \right )_{1}=-2, x_{1}=-\frac{1}{2} \), или \( \left (2^{\frac{1}{x}} \right )_{1}=4 \), откуда \( \left ({\frac{1}{x}} \right )_{2}=2, x_{2}=\frac{1}{2} \)

Ответ: \( x_{1}=-\frac{1}{2}; x_{2}=\frac{1}{2} )\