Задачи

Фильтрация

Показать фильтрацию

По классам:

По предметам:

По подготовке:

По классам:

По авторам:

Докажите, что последовательность \(\left \{ x_{n} \right \}\) сходится: \(x_{n}=1+\frac{1}{2^{2}}+\frac{1}{3^{3}}+...+\frac{1}{n^{n}} \)

Решение №3621: Так как \(\forall n\in N x_{n+1}-x=\frac{1}{\left ( n+1 \right )^{n+1}}> 0\), то последовательность \(\left \{ x_{n} \right \}\) возрастает. Кроме того \(\forall n\in N x_{n}< 1+\frac{1}{2^{2}}+\frac{1}{2^{3}}+...+\frac{1}{2^{n}}=\frac{1}{2}+\left ( \frac{1}{2}+\frac{1}{2^{2}}+...+\frac{1}{2^{n}} \right )< \frac{3}{2}\). То есть последовательность \(\left \{ x_{n} \right \}\) ограничена сверху.

Ответ: NaN

Вычислите при каком значении \(x_{1}\) сходится последовательность\( x_{n+1}=x_{n}^{3}+\frac{3}{4}x_{n} \)

Пока решения данной задачи,увы,нет...

Ответ: x_{1}\in \left [ -\frac{1}{2};\frac{1}{2} \right ]

Исследуйте на сходимость последовательность\( x_{1}=-3, x_{n+1}=1+\frac{6}{x_{n}} \)

Решение №3629: Выпишем несколько первых членов последовательности: \(x_{1}=-3; x_{2}=-1; x_{3}=-5; x_{4}=-\frac{1}{5}; x_{5}=-29; x_{6}=\frac{23}{29}; x_{7}=1+\frac{6*29}{23}\). Таким образом, процесс переходит в первую четверть \(\left ( x_{k}> 0 \right )\), а сначала хотелось сказать, что он расходится. Далее получим, что \(\forall n\geqslant 6\left ( x_{n}> 0 \right ) \)последовательность \(\left \{ x_{2n} \right \} \)возрастающая и ограничена сверху, а последовательность \(\left \{ x_{2n+1} \right \}\) убывающая и ограничена снизу \(\left ( n\geqslant 3 \right ), \lim_{n \to \propto} x_{n}=3. \)

Ответ: NaN

Исследуйте на сходимость последовательность \(x_{1}=\frac{6}{7}, x_{n+1}=4-\frac{3}{x_{n}}\)

Решение №3631: Как обычно, мешает разрыв. Было бы хорошо сказать, что функция возрастает и последовательность \(\left \{ x_{n} \right \}\) возрастает. Но всё не так: \(x_{2}=\frac{1}{2}; x_{3}=-2; x_{4}=\frac{11}{2}; x_{5}=3\frac{5}{11}; x_{6}=3\frac{5}{38}\). При \(n\leqslant 4\) последовательность \(\left \{ x_{n} \right \}\) убывает. Значение ппредела получается из уравнения \(a=4-\frac{3}{a}\Leftrightarrow \left [ \begin{matrix}a-3 \\ a=1 \end{matrix} \right \) Но \(\lim_{n \to \propto} x_{n} =3 \), и это, вообще говоря, надо доказать.

Ответ: NaN

Пусть последовательность \(\left \{ a_{n} \right \} \)сходится, а последовательность \(\left \{ b_{n} \right \} \)ограничена, причем при всех натуральных n выполнено неравенство\( b_{n+1}-b_{n}\geqslant a_{n+1}-a_{n}\). Докажите, что последовательность \( \left \{ b_{n} \right \}\) сходится.

Решение №3641: Приведённое неравенство равносильно тому, что последовательность\( \left \{ b_{n}-a_{n} \right \}\) возрастает. Будучи разностью двух ограниченных, эта последовательность ограничена, а тогда она сходится. Таким образом, поскольку \(b_{n}=a_{n}+\left ( b_{n}-a_{n} \right )\), то последовательность \(\left \{ b_{n} \right \}\) сходится как сумма двух сходящихся последовательностей.

Ответ: NaN

Последовательность \(\left \{ x_{n} \right \}\) задана формулой \(x_{n}=nx_{n-1}+2, x_{0}=c.\) При каких значениях параметра c последовательность сходится?

Пока решения данной задачи,увы,нет...

Ответ: c=2-2e

Докажите, что \(\forall n\in N: \frac{1}{n}-\frac{1}{n^{2}}< \ln \left ( 1+\frac{1}{n} \right )< \frac{1}{n} \)

Решение №3651: Левая часть данного неравенства получается логарифмированием по основанию e обеих частей неравенства задания в. Правая часть неравенства получается логарифмированием по основанию e неравенства \(\left ( 1+\frac{1}{n} \right )^{n}< e\)

Ответ: NaN